The Teichmüller space of the Hirsch foliation
Resumen:
We prove that the Teichmüller space of the Hirsch foliation (a minimal foliation of a closed 3-manifold by non-compact hyperbolic surfaces) is homeomorphic to the space of closed curves in the plane. This allows us to show that the space of hyperbolic metrics on the foliation is a trivial principal fiber bundle. And that the structure group of this bundle, the arc-connected component of the identity in the group of homeomorphisms which are smooth on each leaf and vary continuously in the smooth topology in the transverse direction of the foliation, is contractible.
2018 | |
Teichmüller theory Riemann surface foliations |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/22560 | |
Acceso abierto | |
Licencia Creative Commons Atribución - Sin Derivadas (CC - By-ND 4.0) |
Resultados similares
-
Singularities for analytic continuations of holonomy germs of riccati foliations
Autor(es):: Álvarez, Sebastien
Fecha de publicación:: (2016) -
Flujo geodésico en variedades de curvatura negativa
Autor(es):: García Tejera, María Victoria
Fecha de publicación:: (2015) -
Minimality of the action on the universal circle of uniform foliations
Autor(es):: Fenley, Sergio
Fecha de publicación:: (2021) -
Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, II: Branching foliations
Autor(es):: Barthelmé, Thomas
Fecha de publicación:: (2023) -
Random walk speed is a proper function on Teichmüller space
Autor(es):: Azemar, Aitor
Fecha de publicación:: (2022)