Estimación de velocidad vehicular mediante análisis predictivo sobre redes.

Cikurel, Matias

Resumen:

En este proyecto buscamos estudiar la bondad del modelo Graph WaveNet en la predicción de velocidad de tráfico en un contexto de carencia de datos. Analizando en primer lugar la sensibilidad del modelo frente a la falta de datos, procedemos a plantear una serie de escenarios basados en dos conjuntos de datos vinculados a las ciudades de Los Ángeles y Montevideo. Planteando una serie de variantes con distintos grados de carencia de datos construidas eliminando datos de manera aleatoria, evaluamos una serie de métodos de imputación para observar el impacto en el rendimiento del modelo. Estos métodos de imputación están vinculados a distintos valores estadísticos como son la media general y la media por ubicación, por mencionar algunos. Además, evaluamos una alternativa de imputación que escapa a esta línea de valores estadísticos: el método forward-fill, que en orden cronológico sustituye cada dato faltante con el inmediatamente anterior. Los resultados obtenidos muestran que con un 20% de datos faltantes o más, la imputación de datos comienza a producir mejores resultados sobre la opción de no imputar datos. En la evaluación de los métodos de imputación planteados, el que destaca por sobre los demás es el método forward-fill. Este comportamiento se acentúa a medida que aumenta la cantidad de datos faltantes en el dataset, permaneciendo siempre este método como el mejor. Este resultado puede estar influenciado por la manera en que se eliminan datos para generar los escenarios de prueba, donde al eliminar datos de manera aleatoria, el método forward-fill logra reconstruir la señal mejor que el resto.


Detalles Bibliográficos
2023
Aprendizaje automático
Series temporales
Predicción de velocidades
Imputación de datos
Graph WaveNet
Forward-fill
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/42956
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523230441799680
author Cikurel, Matias
author_facet Cikurel, Matias
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
595f3513661016af87a602ed85779749
489f03e71d39068f329bdec8798bce58
e0876405aa0914604cf0aea7ca97b458
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/42956/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/42956/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/42956/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/42956/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/42956/1/Cik23.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Cikurel Matias, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.none.fl_str_mv Cikurel, Matias
dc.date.accessioned.none.fl_str_mv 2024-03-05T17:37:13Z
dc.date.available.none.fl_str_mv 2024-03-05T17:37:13Z
dc.date.issued.none.fl_str_mv 2023
dc.description.abstract.none.fl_txt_mv En este proyecto buscamos estudiar la bondad del modelo Graph WaveNet en la predicción de velocidad de tráfico en un contexto de carencia de datos. Analizando en primer lugar la sensibilidad del modelo frente a la falta de datos, procedemos a plantear una serie de escenarios basados en dos conjuntos de datos vinculados a las ciudades de Los Ángeles y Montevideo. Planteando una serie de variantes con distintos grados de carencia de datos construidas eliminando datos de manera aleatoria, evaluamos una serie de métodos de imputación para observar el impacto en el rendimiento del modelo. Estos métodos de imputación están vinculados a distintos valores estadísticos como son la media general y la media por ubicación, por mencionar algunos. Además, evaluamos una alternativa de imputación que escapa a esta línea de valores estadísticos: el método forward-fill, que en orden cronológico sustituye cada dato faltante con el inmediatamente anterior. Los resultados obtenidos muestran que con un 20% de datos faltantes o más, la imputación de datos comienza a producir mejores resultados sobre la opción de no imputar datos. En la evaluación de los métodos de imputación planteados, el que destaca por sobre los demás es el método forward-fill. Este comportamiento se acentúa a medida que aumenta la cantidad de datos faltantes en el dataset, permaneciendo siempre este método como el mejor. Este resultado puede estar influenciado por la manera en que se eliminan datos para generar los escenarios de prueba, donde al eliminar datos de manera aleatoria, el método forward-fill logra reconstruir la señal mejor que el resto.
dc.format.extent.es.fl_str_mv 58 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Cikurel, M. Estimación de velocidad vehicular mediante análisis predictivo sobre redes [en línea] Tesis de grado. Montevideo: Udelar. FI. INCO, 2023.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/42956
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar. FI.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Aprendizaje automático
Series temporales
Predicción de velocidades
Imputación de datos
Graph WaveNet
Forward-fill
dc.title.none.fl_str_mv Estimación de velocidad vehicular mediante análisis predictivo sobre redes.
dc.type.es.fl_str_mv Tesis de grado
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description En este proyecto buscamos estudiar la bondad del modelo Graph WaveNet en la predicción de velocidad de tráfico en un contexto de carencia de datos. Analizando en primer lugar la sensibilidad del modelo frente a la falta de datos, procedemos a plantear una serie de escenarios basados en dos conjuntos de datos vinculados a las ciudades de Los Ángeles y Montevideo. Planteando una serie de variantes con distintos grados de carencia de datos construidas eliminando datos de manera aleatoria, evaluamos una serie de métodos de imputación para observar el impacto en el rendimiento del modelo. Estos métodos de imputación están vinculados a distintos valores estadísticos como son la media general y la media por ubicación, por mencionar algunos. Además, evaluamos una alternativa de imputación que escapa a esta línea de valores estadísticos: el método forward-fill, que en orden cronológico sustituye cada dato faltante con el inmediatamente anterior. Los resultados obtenidos muestran que con un 20% de datos faltantes o más, la imputación de datos comienza a producir mejores resultados sobre la opción de no imputar datos. En la evaluación de los métodos de imputación planteados, el que destaca por sobre los demás es el método forward-fill. Este comportamiento se acentúa a medida que aumenta la cantidad de datos faltantes en el dataset, permaneciendo siempre este método como el mejor. Este resultado puede estar influenciado por la manera en que se eliminan datos para generar los escenarios de prueba, donde al eliminar datos de manera aleatoria, el método forward-fill logra reconstruir la señal mejor que el resto.
eu_rights_str_mv openAccess
format bachelorThesis
id COLIBRI_132d663eb902d53f6a4080a90c857298
identifier_str_mv Cikurel, M. Estimación de velocidad vehicular mediante análisis predictivo sobre redes [en línea] Tesis de grado. Montevideo: Udelar. FI. INCO, 2023.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/42956
publishDate 2023
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Cikurel Matias, Universidad de la República (Uruguay). Facultad de Ingeniería.2024-03-05T17:37:13Z2024-03-05T17:37:13Z2023Cikurel, M. Estimación de velocidad vehicular mediante análisis predictivo sobre redes [en línea] Tesis de grado. Montevideo: Udelar. FI. INCO, 2023.https://hdl.handle.net/20.500.12008/42956En este proyecto buscamos estudiar la bondad del modelo Graph WaveNet en la predicción de velocidad de tráfico en un contexto de carencia de datos. Analizando en primer lugar la sensibilidad del modelo frente a la falta de datos, procedemos a plantear una serie de escenarios basados en dos conjuntos de datos vinculados a las ciudades de Los Ángeles y Montevideo. Planteando una serie de variantes con distintos grados de carencia de datos construidas eliminando datos de manera aleatoria, evaluamos una serie de métodos de imputación para observar el impacto en el rendimiento del modelo. Estos métodos de imputación están vinculados a distintos valores estadísticos como son la media general y la media por ubicación, por mencionar algunos. Además, evaluamos una alternativa de imputación que escapa a esta línea de valores estadísticos: el método forward-fill, que en orden cronológico sustituye cada dato faltante con el inmediatamente anterior. Los resultados obtenidos muestran que con un 20% de datos faltantes o más, la imputación de datos comienza a producir mejores resultados sobre la opción de no imputar datos. En la evaluación de los métodos de imputación planteados, el que destaca por sobre los demás es el método forward-fill. Este comportamiento se acentúa a medida que aumenta la cantidad de datos faltantes en el dataset, permaneciendo siempre este método como el mejor. Este resultado puede estar influenciado por la manera en que se eliminan datos para generar los escenarios de prueba, donde al eliminar datos de manera aleatoria, el método forward-fill logra reconstruir la señal mejor que el resto.Submitted by Berón Cecilia (cberon@fing.edu.uy) on 2024-02-29T19:11:36Z No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) Cik23.pdf: 3229700 bytes, checksum: e0876405aa0914604cf0aea7ca97b458 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2024-03-05T17:24:40Z (GMT) No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) Cik23.pdf: 3229700 bytes, checksum: e0876405aa0914604cf0aea7ca97b458 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2024-03-05T17:37:13Z (GMT). No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) Cik23.pdf: 3229700 bytes, checksum: e0876405aa0914604cf0aea7ca97b458 (MD5) Previous issue date: 202358 p.application/pdfesspaUdelar. FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Aprendizaje automáticoSeries temporalesPredicción de velocidadesImputación de datosGraph WaveNetForward-fillEstimación de velocidad vehicular mediante análisis predictivo sobre redes.Tesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaCikurel, MatiasUniversidad de la República (Uruguay). Facultad de Ingeniería.Ingeniero en Computación.LICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/42956/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/42956/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-822292http://localhost:8080/xmlui/bitstream/20.500.12008/42956/3/license_text595f3513661016af87a602ed85779749MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-825790http://localhost:8080/xmlui/bitstream/20.500.12008/42956/4/license_rdf489f03e71d39068f329bdec8798bce58MD54ORIGINALCik23.pdfCik23.pdfapplication/pdf3229700http://localhost:8080/xmlui/bitstream/20.500.12008/42956/1/Cik23.pdfe0876405aa0914604cf0aea7ca97b458MD5120.500.12008/429562024-04-12 14:06:41.042oai:colibri.udelar.edu.uy:20.500.12008/42956VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:46:30.733187COLIBRI - Universidad de la Repúblicafalse
spellingShingle Estimación de velocidad vehicular mediante análisis predictivo sobre redes.
Cikurel, Matias
Aprendizaje automático
Series temporales
Predicción de velocidades
Imputación de datos
Graph WaveNet
Forward-fill
status_str acceptedVersion
title Estimación de velocidad vehicular mediante análisis predictivo sobre redes.
title_full Estimación de velocidad vehicular mediante análisis predictivo sobre redes.
title_fullStr Estimación de velocidad vehicular mediante análisis predictivo sobre redes.
title_full_unstemmed Estimación de velocidad vehicular mediante análisis predictivo sobre redes.
title_short Estimación de velocidad vehicular mediante análisis predictivo sobre redes.
title_sort Estimación de velocidad vehicular mediante análisis predictivo sobre redes.
topic Aprendizaje automático
Series temporales
Predicción de velocidades
Imputación de datos
Graph WaveNet
Forward-fill
url https://hdl.handle.net/20.500.12008/42956