On the Automorphism Group of a polynomial differential ring in two variables
Resumen:
We consider differential rings of the form (K[x, y],D), where K is an algebraically closed field of characteristic zero and D : K[x, y] / K[x, y] is a K-derivation. We study the Automorphism Group of such a ring and give criteria for deciding whether that group is an algebraic group. In most cases, from that study we deduce a primary classification of this type of differential ring up to conjugation with a polynomial automorphism.
2019 | |
Differential rings polynomial automorphism |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/41663 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0) |
Resultados similares
-
On the orbits of plane automorphisms and their stabilizers
Autor(es):: Rittatore, Alvaro
Fecha de publicación:: (2023) -
A characterization of local nilpotence for dimension two polynomial derivations
Autor(es):: Pan, Iván
Fecha de publicación:: (2020) -
Analysis of Rabin's irreducibility test for polynomials over finite fields
Autor(es):: Panario, Daniel
Fecha de publicación:: (2001) -
Aspects of the polynomial affine model of gravity in three dimensions: with focus in the cosmological solutions
Autor(es):: Castillo-Felisola, Oscar
Fecha de publicación:: (2022) -
Vasorelaxant Effect of a Baccharis trimera Infusion on Precontracted Rat Aortic Rings
Autor(es):: Gómez, Maria. A
Fecha de publicación:: (2016)