Stratification learning: detecting mixed density and dimensionality in high dimensional point clouds
Resumen:
The study of point cloud data sampled from a stratification, a collection of manifolds with possible different dimensions, is pursued in this paper. We present a technique for simultaneously soft clustering and estimating the mixed dimensionality and density of such structures. The framework is based on a maximum likelihood estimation of a Poisson mixture model. The presentation of the approach is completed with artificial and real examples demonstrating the importance of extending manifold learning to stratification learning.
2006 | |
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/38740 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
Regularized mixed dimensionality and density learning in computer vision
Autor(es):: Randall, Gregory
Fecha de publicación:: (2007) -
Translated poisson mixture model for stratification learning
Autor(es):: Haro, Gloria
Fecha de publicación:: (2008) -
Detection of low dimensionality and data denoising via set estimation techniques
Autor(es):: Aaron, Catherine
Fecha de publicación:: (2017) -
Las dimensiones de la desigualdad
Autor(es):: Longhi, Augusto
Fecha de publicación:: (2002) -
One-shot three-dimensional scene analysis
Autor(es):: Di Martino, Matías
Fecha de publicación:: (2015)