Aprendizaje profundo para la extracción de edificios en ciudades sin planificación urbana
Supervisor(es): Nesmachnow, Sergio - Toutouh, Jamal
Resumen:
Este proyecto estudia el problema de extracción de edificios, como subtarea de segmentación de imágenes, sobre ciudades o poblados con poca o nula planificación urbana. Para abordar del problema se seleccionaron las arquitecturas de redes neuronales profundas FCN, ResNet (y sus variantes) y U-Net, en conjunto con una serie de hiperparámetros (función de perdida, tasa de aprendizaje) con el n de encontrar los modelos que mejor se desempeñan en la tarea. Para este propósito se diseñó un proceso de selección progresivo y eliminatorio dividido en tres etapas y con dos criterios distintos de selección. Se definieron dos etapas adicionales que consisten en la calibración de los modelos elegidos y en el aplicado de votación de modelos para la clasificación de cada píxel de la imagen. Los resultados experimentales muestran un mejor rendimiento en general de las arquitecturas basadas en U-Net y la combinación de entropía cruzada con Tversky focalizado como función de pérdida. Los mejores desempeños alcanzaron un IoU de 0; 91 para el dataset de San José de las Matas, que fue generado exclusivamente con el propósito de validación de este trabajo. La obtención de resultados aceptables en la labor de extracción de edificios es el punto de partida para otras como la estimación de habitantes o la generación de la propia planificación urbana. En ese sentido, se tomo un área de estudio perteneciente a Montevideo (Uruguay) de la cual se tienen datos demográficos y se experimento estimando la población de la zona a partir de los edificios extraídos por los modelos. El producto del proceso de estimación aplicado tuvo un error de un 11,7% respecto a la estimación mas fiable para esa área en particular.
2021 | |
Aprendizaje automático Aprendizaje profundo Segmentación de imágenes Extracción de edificios Redes neuronales convolucionales FCN ResNet U-Net |
|
Español | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/34130 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807523228771418112 |
---|---|
author | González Petti, Lucas |
author_facet | González Petti, Lucas |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 36c32e9c6da50e6d55578c16944ef7f6 1996b8461bc290aef6a27d78c67b6b52 cad8af43b69ccc27551402873186d75c |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/34130/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/34130/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/34130/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/34130/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/34130/1/GON22.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | González Petti Lucas, Universidad de la República (Uruguay). Facultad de Ingeniería |
dc.creator.advisor.none.fl_str_mv | Nesmachnow, Sergio Toutouh, Jamal |
dc.creator.none.fl_str_mv | González Petti, Lucas |
dc.date.accessioned.none.fl_str_mv | 2022-10-13T12:24:07Z |
dc.date.available.none.fl_str_mv | 2022-10-13T12:24:07Z |
dc.date.issued.none.fl_str_mv | 2021 |
dc.description.abstract.none.fl_txt_mv | Este proyecto estudia el problema de extracción de edificios, como subtarea de segmentación de imágenes, sobre ciudades o poblados con poca o nula planificación urbana. Para abordar del problema se seleccionaron las arquitecturas de redes neuronales profundas FCN, ResNet (y sus variantes) y U-Net, en conjunto con una serie de hiperparámetros (función de perdida, tasa de aprendizaje) con el n de encontrar los modelos que mejor se desempeñan en la tarea. Para este propósito se diseñó un proceso de selección progresivo y eliminatorio dividido en tres etapas y con dos criterios distintos de selección. Se definieron dos etapas adicionales que consisten en la calibración de los modelos elegidos y en el aplicado de votación de modelos para la clasificación de cada píxel de la imagen. Los resultados experimentales muestran un mejor rendimiento en general de las arquitecturas basadas en U-Net y la combinación de entropía cruzada con Tversky focalizado como función de pérdida. Los mejores desempeños alcanzaron un IoU de 0; 91 para el dataset de San José de las Matas, que fue generado exclusivamente con el propósito de validación de este trabajo. La obtención de resultados aceptables en la labor de extracción de edificios es el punto de partida para otras como la estimación de habitantes o la generación de la propia planificación urbana. En ese sentido, se tomo un área de estudio perteneciente a Montevideo (Uruguay) de la cual se tienen datos demográficos y se experimento estimando la población de la zona a partir de los edificios extraídos por los modelos. El producto del proceso de estimación aplicado tuvo un error de un 11,7% respecto a la estimación mas fiable para esa área en particular. |
dc.format.extent.es.fl_str_mv | 109 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | González Petti, L. Aprendizaje profundo para la extracción de edificios en ciudades sin planificación urbana [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2021. |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/34130 |
dc.language.iso.none.fl_str_mv | es spa |
dc.publisher.es.fl_str_mv | Udelar.FI |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Aprendizaje automático Aprendizaje profundo Segmentación de imágenes Extracción de edificios Redes neuronales convolucionales FCN ResNet U-Net |
dc.title.none.fl_str_mv | Aprendizaje profundo para la extracción de edificios en ciudades sin planificación urbana |
dc.type.es.fl_str_mv | Tesis de grado |
dc.type.none.fl_str_mv | info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | Este proyecto estudia el problema de extracción de edificios, como subtarea de segmentación de imágenes, sobre ciudades o poblados con poca o nula planificación urbana. Para abordar del problema se seleccionaron las arquitecturas de redes neuronales profundas FCN, ResNet (y sus variantes) y U-Net, en conjunto con una serie de hiperparámetros (función de perdida, tasa de aprendizaje) con el n de encontrar los modelos que mejor se desempeñan en la tarea. Para este propósito se diseñó un proceso de selección progresivo y eliminatorio dividido en tres etapas y con dos criterios distintos de selección. Se definieron dos etapas adicionales que consisten en la calibración de los modelos elegidos y en el aplicado de votación de modelos para la clasificación de cada píxel de la imagen. Los resultados experimentales muestran un mejor rendimiento en general de las arquitecturas basadas en U-Net y la combinación de entropía cruzada con Tversky focalizado como función de pérdida. Los mejores desempeños alcanzaron un IoU de 0; 91 para el dataset de San José de las Matas, que fue generado exclusivamente con el propósito de validación de este trabajo. La obtención de resultados aceptables en la labor de extracción de edificios es el punto de partida para otras como la estimación de habitantes o la generación de la propia planificación urbana. En ese sentido, se tomo un área de estudio perteneciente a Montevideo (Uruguay) de la cual se tienen datos demográficos y se experimento estimando la población de la zona a partir de los edificios extraídos por los modelos. El producto del proceso de estimación aplicado tuvo un error de un 11,7% respecto a la estimación mas fiable para esa área en particular. |
eu_rights_str_mv | openAccess |
format | bachelorThesis |
id | COLIBRI_12d0a2ea6fe3bba690de4052cfd536a8 |
identifier_str_mv | González Petti, L. Aprendizaje profundo para la extracción de edificios en ciudades sin planificación urbana [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2021. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | spa |
language_invalid_str_mv | es |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/34130 |
publishDate | 2021 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | González Petti Lucas, Universidad de la República (Uruguay). Facultad de Ingeniería2022-10-13T12:24:07Z2022-10-13T12:24:07Z2021González Petti, L. Aprendizaje profundo para la extracción de edificios en ciudades sin planificación urbana [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2021.https://hdl.handle.net/20.500.12008/34130Este proyecto estudia el problema de extracción de edificios, como subtarea de segmentación de imágenes, sobre ciudades o poblados con poca o nula planificación urbana. Para abordar del problema se seleccionaron las arquitecturas de redes neuronales profundas FCN, ResNet (y sus variantes) y U-Net, en conjunto con una serie de hiperparámetros (función de perdida, tasa de aprendizaje) con el n de encontrar los modelos que mejor se desempeñan en la tarea. Para este propósito se diseñó un proceso de selección progresivo y eliminatorio dividido en tres etapas y con dos criterios distintos de selección. Se definieron dos etapas adicionales que consisten en la calibración de los modelos elegidos y en el aplicado de votación de modelos para la clasificación de cada píxel de la imagen. Los resultados experimentales muestran un mejor rendimiento en general de las arquitecturas basadas en U-Net y la combinación de entropía cruzada con Tversky focalizado como función de pérdida. Los mejores desempeños alcanzaron un IoU de 0; 91 para el dataset de San José de las Matas, que fue generado exclusivamente con el propósito de validación de este trabajo. La obtención de resultados aceptables en la labor de extracción de edificios es el punto de partida para otras como la estimación de habitantes o la generación de la propia planificación urbana. En ese sentido, se tomo un área de estudio perteneciente a Montevideo (Uruguay) de la cual se tienen datos demográficos y se experimento estimando la población de la zona a partir de los edificios extraídos por los modelos. El producto del proceso de estimación aplicado tuvo un error de un 11,7% respecto a la estimación mas fiable para esa área en particular.Submitted by Cabrera Gabriela (gfcabrerarossi@gmail.com) on 2022-10-12T14:43:39Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GON22.pdf: 12124933 bytes, checksum: cad8af43b69ccc27551402873186d75c (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-10-12T18:06:23Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GON22.pdf: 12124933 bytes, checksum: cad8af43b69ccc27551402873186d75c (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-10-13T12:24:07Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GON22.pdf: 12124933 bytes, checksum: cad8af43b69ccc27551402873186d75c (MD5) Previous issue date: 2021109 p.application/pdfesspaUdelar.FILas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Aprendizaje automáticoAprendizaje profundoSegmentación de imágenesExtracción de edificiosRedes neuronales convolucionalesFCNResNetU-NetAprendizaje profundo para la extracción de edificios en ciudades sin planificación urbanaTesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaGonzález Petti, LucasNesmachnow, SergioToutouh, JamalUniversidad de la República (Uruguay). Facultad de IngenieríaIngeniero en ComputaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/34130/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/34130/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/34130/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/34130/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALGON22.pdfGON22.pdfapplication/pdf12124933http://localhost:8080/xmlui/bitstream/20.500.12008/34130/1/GON22.pdfcad8af43b69ccc27551402873186d75cMD5120.500.12008/341302024-04-12 14:06:40.87oai:colibri.udelar.edu.uy:20.500.12008/34130VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:46:26.950159COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Aprendizaje profundo para la extracción de edificios en ciudades sin planificación urbana González Petti, Lucas Aprendizaje automático Aprendizaje profundo Segmentación de imágenes Extracción de edificios Redes neuronales convolucionales FCN ResNet U-Net |
status_str | acceptedVersion |
title | Aprendizaje profundo para la extracción de edificios en ciudades sin planificación urbana |
title_full | Aprendizaje profundo para la extracción de edificios en ciudades sin planificación urbana |
title_fullStr | Aprendizaje profundo para la extracción de edificios en ciudades sin planificación urbana |
title_full_unstemmed | Aprendizaje profundo para la extracción de edificios en ciudades sin planificación urbana |
title_short | Aprendizaje profundo para la extracción de edificios en ciudades sin planificación urbana |
title_sort | Aprendizaje profundo para la extracción de edificios en ciudades sin planificación urbana |
topic | Aprendizaje automático Aprendizaje profundo Segmentación de imágenes Extracción de edificios Redes neuronales convolucionales FCN ResNet U-Net |
url | https://hdl.handle.net/20.500.12008/34130 |