Aprendizaje profundo para la extracción de edificios en ciudades sin planificación urbana

González Petti, Lucas

Supervisor(es): Nesmachnow, Sergio - Toutouh, Jamal

Resumen:

Este proyecto estudia el problema de extracción de edificios, como subtarea de segmentación de imágenes, sobre ciudades o poblados con poca o nula planificación urbana. Para abordar del problema se seleccionaron las arquitecturas de redes neuronales profundas FCN, ResNet (y sus variantes) y U-Net, en conjunto con una serie de hiperparámetros (función de perdida, tasa de aprendizaje) con el n de encontrar los modelos que mejor se desempeñan en la tarea. Para este propósito se diseñó un proceso de selección progresivo y eliminatorio dividido en tres etapas y con dos criterios distintos de selección. Se definieron dos etapas adicionales que consisten en la calibración de los modelos elegidos y en el aplicado de votación de modelos para la clasificación de cada píxel de la imagen. Los resultados experimentales muestran un mejor rendimiento en general de las arquitecturas basadas en U-Net y la combinación de entropía cruzada con Tversky focalizado como función de pérdida. Los mejores desempeños alcanzaron un IoU de 0; 91 para el dataset de San José de las Matas, que fue generado exclusivamente con el propósito de validación de este trabajo. La obtención de resultados aceptables en la labor de extracción de edificios es el punto de partida para otras como la estimación de habitantes o la generación de la propia planificación urbana. En ese sentido, se tomo un área de estudio perteneciente a Montevideo (Uruguay) de la cual se tienen datos demográficos y se experimento estimando la población de la zona a partir de los edificios extraídos por los modelos. El producto del proceso de estimación aplicado tuvo un error de un 11,7% respecto a la estimación mas fiable para esa área en particular.


Detalles Bibliográficos
2021
Aprendizaje automático
Aprendizaje profundo
Segmentación de imágenes
Extracción de edificios
Redes neuronales convolucionales
FCN
ResNet
U-Net
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/34130
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523228771418112
author González Petti, Lucas
author_facet González Petti, Lucas
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
36c32e9c6da50e6d55578c16944ef7f6
1996b8461bc290aef6a27d78c67b6b52
cad8af43b69ccc27551402873186d75c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/34130/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/34130/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/34130/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/34130/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/34130/1/GON22.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv González Petti Lucas, Universidad de la República (Uruguay). Facultad de Ingeniería
dc.creator.advisor.none.fl_str_mv Nesmachnow, Sergio
Toutouh, Jamal
dc.creator.none.fl_str_mv González Petti, Lucas
dc.date.accessioned.none.fl_str_mv 2022-10-13T12:24:07Z
dc.date.available.none.fl_str_mv 2022-10-13T12:24:07Z
dc.date.issued.none.fl_str_mv 2021
dc.description.abstract.none.fl_txt_mv Este proyecto estudia el problema de extracción de edificios, como subtarea de segmentación de imágenes, sobre ciudades o poblados con poca o nula planificación urbana. Para abordar del problema se seleccionaron las arquitecturas de redes neuronales profundas FCN, ResNet (y sus variantes) y U-Net, en conjunto con una serie de hiperparámetros (función de perdida, tasa de aprendizaje) con el n de encontrar los modelos que mejor se desempeñan en la tarea. Para este propósito se diseñó un proceso de selección progresivo y eliminatorio dividido en tres etapas y con dos criterios distintos de selección. Se definieron dos etapas adicionales que consisten en la calibración de los modelos elegidos y en el aplicado de votación de modelos para la clasificación de cada píxel de la imagen. Los resultados experimentales muestran un mejor rendimiento en general de las arquitecturas basadas en U-Net y la combinación de entropía cruzada con Tversky focalizado como función de pérdida. Los mejores desempeños alcanzaron un IoU de 0; 91 para el dataset de San José de las Matas, que fue generado exclusivamente con el propósito de validación de este trabajo. La obtención de resultados aceptables en la labor de extracción de edificios es el punto de partida para otras como la estimación de habitantes o la generación de la propia planificación urbana. En ese sentido, se tomo un área de estudio perteneciente a Montevideo (Uruguay) de la cual se tienen datos demográficos y se experimento estimando la población de la zona a partir de los edificios extraídos por los modelos. El producto del proceso de estimación aplicado tuvo un error de un 11,7% respecto a la estimación mas fiable para esa área en particular.
dc.format.extent.es.fl_str_mv 109 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv González Petti, L. Aprendizaje profundo para la extracción de edificios en ciudades sin planificación urbana [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2021.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/34130
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar.FI
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Aprendizaje automático
Aprendizaje profundo
Segmentación de imágenes
Extracción de edificios
Redes neuronales convolucionales
FCN
ResNet
U-Net
dc.title.none.fl_str_mv Aprendizaje profundo para la extracción de edificios en ciudades sin planificación urbana
dc.type.es.fl_str_mv Tesis de grado
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Este proyecto estudia el problema de extracción de edificios, como subtarea de segmentación de imágenes, sobre ciudades o poblados con poca o nula planificación urbana. Para abordar del problema se seleccionaron las arquitecturas de redes neuronales profundas FCN, ResNet (y sus variantes) y U-Net, en conjunto con una serie de hiperparámetros (función de perdida, tasa de aprendizaje) con el n de encontrar los modelos que mejor se desempeñan en la tarea. Para este propósito se diseñó un proceso de selección progresivo y eliminatorio dividido en tres etapas y con dos criterios distintos de selección. Se definieron dos etapas adicionales que consisten en la calibración de los modelos elegidos y en el aplicado de votación de modelos para la clasificación de cada píxel de la imagen. Los resultados experimentales muestran un mejor rendimiento en general de las arquitecturas basadas en U-Net y la combinación de entropía cruzada con Tversky focalizado como función de pérdida. Los mejores desempeños alcanzaron un IoU de 0; 91 para el dataset de San José de las Matas, que fue generado exclusivamente con el propósito de validación de este trabajo. La obtención de resultados aceptables en la labor de extracción de edificios es el punto de partida para otras como la estimación de habitantes o la generación de la propia planificación urbana. En ese sentido, se tomo un área de estudio perteneciente a Montevideo (Uruguay) de la cual se tienen datos demográficos y se experimento estimando la población de la zona a partir de los edificios extraídos por los modelos. El producto del proceso de estimación aplicado tuvo un error de un 11,7% respecto a la estimación mas fiable para esa área en particular.
eu_rights_str_mv openAccess
format bachelorThesis
id COLIBRI_12d0a2ea6fe3bba690de4052cfd536a8
identifier_str_mv González Petti, L. Aprendizaje profundo para la extracción de edificios en ciudades sin planificación urbana [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2021.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/34130
publishDate 2021
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling González Petti Lucas, Universidad de la República (Uruguay). Facultad de Ingeniería2022-10-13T12:24:07Z2022-10-13T12:24:07Z2021González Petti, L. Aprendizaje profundo para la extracción de edificios en ciudades sin planificación urbana [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2021.https://hdl.handle.net/20.500.12008/34130Este proyecto estudia el problema de extracción de edificios, como subtarea de segmentación de imágenes, sobre ciudades o poblados con poca o nula planificación urbana. Para abordar del problema se seleccionaron las arquitecturas de redes neuronales profundas FCN, ResNet (y sus variantes) y U-Net, en conjunto con una serie de hiperparámetros (función de perdida, tasa de aprendizaje) con el n de encontrar los modelos que mejor se desempeñan en la tarea. Para este propósito se diseñó un proceso de selección progresivo y eliminatorio dividido en tres etapas y con dos criterios distintos de selección. Se definieron dos etapas adicionales que consisten en la calibración de los modelos elegidos y en el aplicado de votación de modelos para la clasificación de cada píxel de la imagen. Los resultados experimentales muestran un mejor rendimiento en general de las arquitecturas basadas en U-Net y la combinación de entropía cruzada con Tversky focalizado como función de pérdida. Los mejores desempeños alcanzaron un IoU de 0; 91 para el dataset de San José de las Matas, que fue generado exclusivamente con el propósito de validación de este trabajo. La obtención de resultados aceptables en la labor de extracción de edificios es el punto de partida para otras como la estimación de habitantes o la generación de la propia planificación urbana. En ese sentido, se tomo un área de estudio perteneciente a Montevideo (Uruguay) de la cual se tienen datos demográficos y se experimento estimando la población de la zona a partir de los edificios extraídos por los modelos. El producto del proceso de estimación aplicado tuvo un error de un 11,7% respecto a la estimación mas fiable para esa área en particular.Submitted by Cabrera Gabriela (gfcabrerarossi@gmail.com) on 2022-10-12T14:43:39Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GON22.pdf: 12124933 bytes, checksum: cad8af43b69ccc27551402873186d75c (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-10-12T18:06:23Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GON22.pdf: 12124933 bytes, checksum: cad8af43b69ccc27551402873186d75c (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-10-13T12:24:07Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GON22.pdf: 12124933 bytes, checksum: cad8af43b69ccc27551402873186d75c (MD5) Previous issue date: 2021109 p.application/pdfesspaUdelar.FILas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Aprendizaje automáticoAprendizaje profundoSegmentación de imágenesExtracción de edificiosRedes neuronales convolucionalesFCNResNetU-NetAprendizaje profundo para la extracción de edificios en ciudades sin planificación urbanaTesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaGonzález Petti, LucasNesmachnow, SergioToutouh, JamalUniversidad de la República (Uruguay). Facultad de IngenieríaIngeniero en ComputaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/34130/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/34130/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/34130/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/34130/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALGON22.pdfGON22.pdfapplication/pdf12124933http://localhost:8080/xmlui/bitstream/20.500.12008/34130/1/GON22.pdfcad8af43b69ccc27551402873186d75cMD5120.500.12008/341302024-04-12 14:06:40.87oai:colibri.udelar.edu.uy:20.500.12008/34130VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:46:26.950159COLIBRI - Universidad de la Repúblicafalse
spellingShingle Aprendizaje profundo para la extracción de edificios en ciudades sin planificación urbana
González Petti, Lucas
Aprendizaje automático
Aprendizaje profundo
Segmentación de imágenes
Extracción de edificios
Redes neuronales convolucionales
FCN
ResNet
U-Net
status_str acceptedVersion
title Aprendizaje profundo para la extracción de edificios en ciudades sin planificación urbana
title_full Aprendizaje profundo para la extracción de edificios en ciudades sin planificación urbana
title_fullStr Aprendizaje profundo para la extracción de edificios en ciudades sin planificación urbana
title_full_unstemmed Aprendizaje profundo para la extracción de edificios en ciudades sin planificación urbana
title_short Aprendizaje profundo para la extracción de edificios en ciudades sin planificación urbana
title_sort Aprendizaje profundo para la extracción de edificios en ciudades sin planificación urbana
topic Aprendizaje automático
Aprendizaje profundo
Segmentación de imágenes
Extracción de edificios
Redes neuronales convolucionales
FCN
ResNet
U-Net
url https://hdl.handle.net/20.500.12008/34130