Data driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulation

Barreiro, Marcelo - Díaz Negrín, Nicolás - Rubido, Nicolás

Resumen:

Understanding the physical mechanisms of the Madden-Julian Oscillation (MJO) and its evolution is a major concern within the climate community. Its main importance relies on its ability to act as a source of predictability within the intra-seasonal time-scale in tropical and extratropical regions, therefore filling the gap between weather and climate forecasts. However, most atmospheric general circulation models fail to correctly represent MJO’s evolution, and their prediction skills are still far from MJO’s theoretical predictability. In this work we infer low dimensional models of the MJO from data by applying a recently developed machine learning technique, the Sparse Identification of Non-linear Dynamics (SINDy). We use the daily-mean outgoing longwave radiation MJO index (OMI) as input data to infer bi-dimensional climatological models of the MJO, and analyse the inferred models during El Niño and La Niña years. This approach allows us to diagnose the MJO’s behaviour in OMI’s phase space. Our results show that MJO can be most frequently represented by a harmonic oscillator, which represents the MJO’s eastward propagation and characteristic period. Upon this basic oscillatory behaviour, we find that small non-linear corrections play a fundamental role in representing MJO’s non-uniform speed of propagation, explaining its acceleration over the Pacific Ocean region. Particularly, we find that MJO’s evolution is most frequently non-linear [linear] during El Niño [La Niña] years. Overall, our work shows that SINDy can robustly model MJO’s evolution as a linear oscillator with small non-linear corrections, contributing to understand the MJO’s dynamics and dependency on El Niño-Southern Oscillation.


Detalles Bibliográficos
2023
Madden-Julian Oscillation
ENSO
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/42220
Acceso abierto
Licencia Creative Commons Atribución (CC - By 4.0)
_version_ 1807522805574533120
author Barreiro, Marcelo
author2 Díaz Negrín, Nicolás
Rubido, Nicolás
author2_role author
author
author_facet Barreiro, Marcelo
Díaz Negrín, Nicolás
Rubido, Nicolás
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a0ebbeafb9d2ec7cbb19d7137ebc392c
c3353adb4b970603e3b1fce8a9e67d6c
71ed42ef0a0b648670f707320be37b90
24e67e28a5f6e0b31758b0e63fea3b5b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/42220/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/42220/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/42220/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/42220/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/42220/1/s41612-023-00527-8.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Barreiro Marcelo, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.
Díaz Negrín Nicolás, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.
Rubido Nicolás, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.
dc.creator.none.fl_str_mv Barreiro, Marcelo
Díaz Negrín, Nicolás
Rubido, Nicolás
dc.date.accessioned.none.fl_str_mv 2024-01-23T15:20:20Z
dc.date.available.none.fl_str_mv 2024-01-23T15:20:20Z
dc.date.issued.none.fl_str_mv 2023
dc.description.abstract.none.fl_txt_mv Understanding the physical mechanisms of the Madden-Julian Oscillation (MJO) and its evolution is a major concern within the climate community. Its main importance relies on its ability to act as a source of predictability within the intra-seasonal time-scale in tropical and extratropical regions, therefore filling the gap between weather and climate forecasts. However, most atmospheric general circulation models fail to correctly represent MJO’s evolution, and their prediction skills are still far from MJO’s theoretical predictability. In this work we infer low dimensional models of the MJO from data by applying a recently developed machine learning technique, the Sparse Identification of Non-linear Dynamics (SINDy). We use the daily-mean outgoing longwave radiation MJO index (OMI) as input data to infer bi-dimensional climatological models of the MJO, and analyse the inferred models during El Niño and La Niña years. This approach allows us to diagnose the MJO’s behaviour in OMI’s phase space. Our results show that MJO can be most frequently represented by a harmonic oscillator, which represents the MJO’s eastward propagation and characteristic period. Upon this basic oscillatory behaviour, we find that small non-linear corrections play a fundamental role in representing MJO’s non-uniform speed of propagation, explaining its acceleration over the Pacific Ocean region. Particularly, we find that MJO’s evolution is most frequently non-linear [linear] during El Niño [La Niña] years. Overall, our work shows that SINDy can robustly model MJO’s evolution as a linear oscillator with small non-linear corrections, contributing to understand the MJO’s dynamics and dependency on El Niño-Southern Oscillation.
dc.format.extent.es.fl_str_mv 12 h.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Barreiro, M, Díaz Negrín, N y Rubido, N. "Data driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulation". npj Climate and Atmospheric Science. [en línea] 2023 , 6: article number: 203. 12 h. DOI: 10.1038/s41612-023-00527-8
dc.identifier.doi.none.fl_str_mv 10.1038/s41612-023-00527-8
dc.identifier.issn.none.fl_str_mv 2397-3722
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/42220
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Nature
dc.relation.ispartof.es.fl_str_mv npj Climate and Atmospheric Science, 2023, 6: article number: 203.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución (CC - By 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Madden-Julian Oscillation
ENSO
dc.title.none.fl_str_mv Data driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulation
dc.type.es.fl_str_mv Artículo
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Understanding the physical mechanisms of the Madden-Julian Oscillation (MJO) and its evolution is a major concern within the climate community. Its main importance relies on its ability to act as a source of predictability within the intra-seasonal time-scale in tropical and extratropical regions, therefore filling the gap between weather and climate forecasts. However, most atmospheric general circulation models fail to correctly represent MJO’s evolution, and their prediction skills are still far from MJO’s theoretical predictability. In this work we infer low dimensional models of the MJO from data by applying a recently developed machine learning technique, the Sparse Identification of Non-linear Dynamics (SINDy). We use the daily-mean outgoing longwave radiation MJO index (OMI) as input data to infer bi-dimensional climatological models of the MJO, and analyse the inferred models during El Niño and La Niña years. This approach allows us to diagnose the MJO’s behaviour in OMI’s phase space. Our results show that MJO can be most frequently represented by a harmonic oscillator, which represents the MJO’s eastward propagation and characteristic period. Upon this basic oscillatory behaviour, we find that small non-linear corrections play a fundamental role in representing MJO’s non-uniform speed of propagation, explaining its acceleration over the Pacific Ocean region. Particularly, we find that MJO’s evolution is most frequently non-linear [linear] during El Niño [La Niña] years. Overall, our work shows that SINDy can robustly model MJO’s evolution as a linear oscillator with small non-linear corrections, contributing to understand the MJO’s dynamics and dependency on El Niño-Southern Oscillation.
eu_rights_str_mv openAccess
format article
id COLIBRI_0f9d5bc33ad1a7e4fc73093a8b09dd1d
identifier_str_mv Barreiro, M, Díaz Negrín, N y Rubido, N. "Data driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulation". npj Climate and Atmospheric Science. [en línea] 2023 , 6: article number: 203. 12 h. DOI: 10.1038/s41612-023-00527-8
2397-3722
10.1038/s41612-023-00527-8
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/42220
publishDate 2023
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución (CC - By 4.0)
spelling Barreiro Marcelo, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.Díaz Negrín Nicolás, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.Rubido Nicolás, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.2024-01-23T15:20:20Z2024-01-23T15:20:20Z2023Barreiro, M, Díaz Negrín, N y Rubido, N. "Data driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulation". npj Climate and Atmospheric Science. [en línea] 2023 , 6: article number: 203. 12 h. DOI: 10.1038/s41612-023-00527-82397-3722https://hdl.handle.net/20.500.12008/4222010.1038/s41612-023-00527-8Understanding the physical mechanisms of the Madden-Julian Oscillation (MJO) and its evolution is a major concern within the climate community. Its main importance relies on its ability to act as a source of predictability within the intra-seasonal time-scale in tropical and extratropical regions, therefore filling the gap between weather and climate forecasts. However, most atmospheric general circulation models fail to correctly represent MJO’s evolution, and their prediction skills are still far from MJO’s theoretical predictability. In this work we infer low dimensional models of the MJO from data by applying a recently developed machine learning technique, the Sparse Identification of Non-linear Dynamics (SINDy). We use the daily-mean outgoing longwave radiation MJO index (OMI) as input data to infer bi-dimensional climatological models of the MJO, and analyse the inferred models during El Niño and La Niña years. This approach allows us to diagnose the MJO’s behaviour in OMI’s phase space. Our results show that MJO can be most frequently represented by a harmonic oscillator, which represents the MJO’s eastward propagation and characteristic period. Upon this basic oscillatory behaviour, we find that small non-linear corrections play a fundamental role in representing MJO’s non-uniform speed of propagation, explaining its acceleration over the Pacific Ocean region. Particularly, we find that MJO’s evolution is most frequently non-linear [linear] during El Niño [La Niña] years. Overall, our work shows that SINDy can robustly model MJO’s evolution as a linear oscillator with small non-linear corrections, contributing to understand the MJO’s dynamics and dependency on El Niño-Southern Oscillation.Submitted by Pintos Natalia (nataliapintosmvd@gmail.com) on 2024-01-23T14:58:14Z No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) s41612-023-00527-8.pdf: 3829787 bytes, checksum: 24e67e28a5f6e0b31758b0e63fea3b5b (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2024-01-23T15:05:44Z (GMT) No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) s41612-023-00527-8.pdf: 3829787 bytes, checksum: 24e67e28a5f6e0b31758b0e63fea3b5b (MD5)Made available in DSpace by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2024-01-23T15:20:20Z (GMT). No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) s41612-023-00527-8.pdf: 3829787 bytes, checksum: 24e67e28a5f6e0b31758b0e63fea3b5b (MD5) Previous issue date: 202312 h.application/pdfenengNaturenpj Climate and Atmospheric Science, 2023, 6: article number: 203.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC - By 4.0)Madden-Julian OscillationENSOData driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulationArtículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaBarreiro, MarceloDíaz Negrín, NicolásRubido, NicolásLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/42220/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-844http://localhost:8080/xmlui/bitstream/20.500.12008/42220/2/license_urla0ebbeafb9d2ec7cbb19d7137ebc392cMD52license_textlicense_texttext/html; charset=utf-820555http://localhost:8080/xmlui/bitstream/20.500.12008/42220/3/license_textc3353adb4b970603e3b1fce8a9e67d6cMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-824251http://localhost:8080/xmlui/bitstream/20.500.12008/42220/4/license_rdf71ed42ef0a0b648670f707320be37b90MD54ORIGINALs41612-023-00527-8.pdfs41612-023-00527-8.pdfapplication/pdf3829787http://localhost:8080/xmlui/bitstream/20.500.12008/42220/1/s41612-023-00527-8.pdf24e67e28a5f6e0b31758b0e63fea3b5bMD5120.500.12008/422202024-01-23 12:20:20.143oai:colibri.udelar.edu.uy:20.500.12008/42220VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:29:18.352623COLIBRI - Universidad de la Repúblicafalse
spellingShingle Data driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulation
Barreiro, Marcelo
Madden-Julian Oscillation
ENSO
status_str publishedVersion
title Data driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulation
title_full Data driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulation
title_fullStr Data driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulation
title_full_unstemmed Data driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulation
title_short Data driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulation
title_sort Data driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulation
topic Madden-Julian Oscillation
ENSO
url https://hdl.handle.net/20.500.12008/42220