Data driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulation
Resumen:
Understanding the physical mechanisms of the Madden-Julian Oscillation (MJO) and its evolution is a major concern within the climate community. Its main importance relies on its ability to act as a source of predictability within the intra-seasonal time-scale in tropical and extratropical regions, therefore filling the gap between weather and climate forecasts. However, most atmospheric general circulation models fail to correctly represent MJO’s evolution, and their prediction skills are still far from MJO’s theoretical predictability. In this work we infer low dimensional models of the MJO from data by applying a recently developed machine learning technique, the Sparse Identification of Non-linear Dynamics (SINDy). We use the daily-mean outgoing longwave radiation MJO index (OMI) as input data to infer bi-dimensional climatological models of the MJO, and analyse the inferred models during El Niño and La Niña years. This approach allows us to diagnose the MJO’s behaviour in OMI’s phase space. Our results show that MJO can be most frequently represented by a harmonic oscillator, which represents the MJO’s eastward propagation and characteristic period. Upon this basic oscillatory behaviour, we find that small non-linear corrections play a fundamental role in representing MJO’s non-uniform speed of propagation, explaining its acceleration over the Pacific Ocean region. Particularly, we find that MJO’s evolution is most frequently non-linear [linear] during El Niño [La Niña] years. Overall, our work shows that SINDy can robustly model MJO’s evolution as a linear oscillator with small non-linear corrections, contributing to understand the MJO’s dynamics and dependency on El Niño-Southern Oscillation.
2023 | |
Madden-Julian Oscillation ENSO |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/42220 | |
Acceso abierto | |
Licencia Creative Commons Atribución (CC - By 4.0) |
_version_ | 1807522805574533120 |
---|---|
author | Barreiro, Marcelo |
author2 | Díaz Negrín, Nicolás Rubido, Nicolás |
author2_role | author author |
author_facet | Barreiro, Marcelo Díaz Negrín, Nicolás Rubido, Nicolás |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a0ebbeafb9d2ec7cbb19d7137ebc392c c3353adb4b970603e3b1fce8a9e67d6c 71ed42ef0a0b648670f707320be37b90 24e67e28a5f6e0b31758b0e63fea3b5b |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/42220/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/42220/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/42220/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/42220/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/42220/1/s41612-023-00527-8.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Barreiro Marcelo, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física. Díaz Negrín Nicolás, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física. Rubido Nicolás, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física. |
dc.creator.none.fl_str_mv | Barreiro, Marcelo Díaz Negrín, Nicolás Rubido, Nicolás |
dc.date.accessioned.none.fl_str_mv | 2024-01-23T15:20:20Z |
dc.date.available.none.fl_str_mv | 2024-01-23T15:20:20Z |
dc.date.issued.none.fl_str_mv | 2023 |
dc.description.abstract.none.fl_txt_mv | Understanding the physical mechanisms of the Madden-Julian Oscillation (MJO) and its evolution is a major concern within the climate community. Its main importance relies on its ability to act as a source of predictability within the intra-seasonal time-scale in tropical and extratropical regions, therefore filling the gap between weather and climate forecasts. However, most atmospheric general circulation models fail to correctly represent MJO’s evolution, and their prediction skills are still far from MJO’s theoretical predictability. In this work we infer low dimensional models of the MJO from data by applying a recently developed machine learning technique, the Sparse Identification of Non-linear Dynamics (SINDy). We use the daily-mean outgoing longwave radiation MJO index (OMI) as input data to infer bi-dimensional climatological models of the MJO, and analyse the inferred models during El Niño and La Niña years. This approach allows us to diagnose the MJO’s behaviour in OMI’s phase space. Our results show that MJO can be most frequently represented by a harmonic oscillator, which represents the MJO’s eastward propagation and characteristic period. Upon this basic oscillatory behaviour, we find that small non-linear corrections play a fundamental role in representing MJO’s non-uniform speed of propagation, explaining its acceleration over the Pacific Ocean region. Particularly, we find that MJO’s evolution is most frequently non-linear [linear] during El Niño [La Niña] years. Overall, our work shows that SINDy can robustly model MJO’s evolution as a linear oscillator with small non-linear corrections, contributing to understand the MJO’s dynamics and dependency on El Niño-Southern Oscillation. |
dc.format.extent.es.fl_str_mv | 12 h. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Barreiro, M, Díaz Negrín, N y Rubido, N. "Data driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulation". npj Climate and Atmospheric Science. [en línea] 2023 , 6: article number: 203. 12 h. DOI: 10.1038/s41612-023-00527-8 |
dc.identifier.doi.none.fl_str_mv | 10.1038/s41612-023-00527-8 |
dc.identifier.issn.none.fl_str_mv | 2397-3722 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/42220 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | Nature |
dc.relation.ispartof.es.fl_str_mv | npj Climate and Atmospheric Science, 2023, 6: article number: 203. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Madden-Julian Oscillation ENSO |
dc.title.none.fl_str_mv | Data driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulation |
dc.type.es.fl_str_mv | Artículo |
dc.type.none.fl_str_mv | info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Understanding the physical mechanisms of the Madden-Julian Oscillation (MJO) and its evolution is a major concern within the climate community. Its main importance relies on its ability to act as a source of predictability within the intra-seasonal time-scale in tropical and extratropical regions, therefore filling the gap between weather and climate forecasts. However, most atmospheric general circulation models fail to correctly represent MJO’s evolution, and their prediction skills are still far from MJO’s theoretical predictability. In this work we infer low dimensional models of the MJO from data by applying a recently developed machine learning technique, the Sparse Identification of Non-linear Dynamics (SINDy). We use the daily-mean outgoing longwave radiation MJO index (OMI) as input data to infer bi-dimensional climatological models of the MJO, and analyse the inferred models during El Niño and La Niña years. This approach allows us to diagnose the MJO’s behaviour in OMI’s phase space. Our results show that MJO can be most frequently represented by a harmonic oscillator, which represents the MJO’s eastward propagation and characteristic period. Upon this basic oscillatory behaviour, we find that small non-linear corrections play a fundamental role in representing MJO’s non-uniform speed of propagation, explaining its acceleration over the Pacific Ocean region. Particularly, we find that MJO’s evolution is most frequently non-linear [linear] during El Niño [La Niña] years. Overall, our work shows that SINDy can robustly model MJO’s evolution as a linear oscillator with small non-linear corrections, contributing to understand the MJO’s dynamics and dependency on El Niño-Southern Oscillation. |
eu_rights_str_mv | openAccess |
format | article |
id | COLIBRI_0f9d5bc33ad1a7e4fc73093a8b09dd1d |
identifier_str_mv | Barreiro, M, Díaz Negrín, N y Rubido, N. "Data driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulation". npj Climate and Atmospheric Science. [en línea] 2023 , 6: article number: 203. 12 h. DOI: 10.1038/s41612-023-00527-8 2397-3722 10.1038/s41612-023-00527-8 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/42220 |
publishDate | 2023 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
spelling | Barreiro Marcelo, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.Díaz Negrín Nicolás, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.Rubido Nicolás, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.2024-01-23T15:20:20Z2024-01-23T15:20:20Z2023Barreiro, M, Díaz Negrín, N y Rubido, N. "Data driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulation". npj Climate and Atmospheric Science. [en línea] 2023 , 6: article number: 203. 12 h. DOI: 10.1038/s41612-023-00527-82397-3722https://hdl.handle.net/20.500.12008/4222010.1038/s41612-023-00527-8Understanding the physical mechanisms of the Madden-Julian Oscillation (MJO) and its evolution is a major concern within the climate community. Its main importance relies on its ability to act as a source of predictability within the intra-seasonal time-scale in tropical and extratropical regions, therefore filling the gap between weather and climate forecasts. However, most atmospheric general circulation models fail to correctly represent MJO’s evolution, and their prediction skills are still far from MJO’s theoretical predictability. In this work we infer low dimensional models of the MJO from data by applying a recently developed machine learning technique, the Sparse Identification of Non-linear Dynamics (SINDy). We use the daily-mean outgoing longwave radiation MJO index (OMI) as input data to infer bi-dimensional climatological models of the MJO, and analyse the inferred models during El Niño and La Niña years. This approach allows us to diagnose the MJO’s behaviour in OMI’s phase space. Our results show that MJO can be most frequently represented by a harmonic oscillator, which represents the MJO’s eastward propagation and characteristic period. Upon this basic oscillatory behaviour, we find that small non-linear corrections play a fundamental role in representing MJO’s non-uniform speed of propagation, explaining its acceleration over the Pacific Ocean region. Particularly, we find that MJO’s evolution is most frequently non-linear [linear] during El Niño [La Niña] years. Overall, our work shows that SINDy can robustly model MJO’s evolution as a linear oscillator with small non-linear corrections, contributing to understand the MJO’s dynamics and dependency on El Niño-Southern Oscillation.Submitted by Pintos Natalia (nataliapintosmvd@gmail.com) on 2024-01-23T14:58:14Z No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) s41612-023-00527-8.pdf: 3829787 bytes, checksum: 24e67e28a5f6e0b31758b0e63fea3b5b (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2024-01-23T15:05:44Z (GMT) No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) s41612-023-00527-8.pdf: 3829787 bytes, checksum: 24e67e28a5f6e0b31758b0e63fea3b5b (MD5)Made available in DSpace by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2024-01-23T15:20:20Z (GMT). No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) s41612-023-00527-8.pdf: 3829787 bytes, checksum: 24e67e28a5f6e0b31758b0e63fea3b5b (MD5) Previous issue date: 202312 h.application/pdfenengNaturenpj Climate and Atmospheric Science, 2023, 6: article number: 203.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC - By 4.0)Madden-Julian OscillationENSOData driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulationArtículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaBarreiro, MarceloDíaz Negrín, NicolásRubido, NicolásLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/42220/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-844http://localhost:8080/xmlui/bitstream/20.500.12008/42220/2/license_urla0ebbeafb9d2ec7cbb19d7137ebc392cMD52license_textlicense_texttext/html; charset=utf-820555http://localhost:8080/xmlui/bitstream/20.500.12008/42220/3/license_textc3353adb4b970603e3b1fce8a9e67d6cMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-824251http://localhost:8080/xmlui/bitstream/20.500.12008/42220/4/license_rdf71ed42ef0a0b648670f707320be37b90MD54ORIGINALs41612-023-00527-8.pdfs41612-023-00527-8.pdfapplication/pdf3829787http://localhost:8080/xmlui/bitstream/20.500.12008/42220/1/s41612-023-00527-8.pdf24e67e28a5f6e0b31758b0e63fea3b5bMD5120.500.12008/422202024-01-23 12:20:20.143oai:colibri.udelar.edu.uy:20.500.12008/42220VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:29:18.352623COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Data driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulation Barreiro, Marcelo Madden-Julian Oscillation ENSO |
status_str | publishedVersion |
title | Data driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulation |
title_full | Data driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulation |
title_fullStr | Data driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulation |
title_full_unstemmed | Data driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulation |
title_short | Data driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulation |
title_sort | Data driven models of the Madden-Julian Oscillation: understanding its evolution and ENSO modulation |
topic | Madden-Julian Oscillation ENSO |
url | https://hdl.handle.net/20.500.12008/42220 |