Control of the Gyrover : a single-wheel gyroscopically stabilized robot
Resumen:
The Gyrover is a single wheel gyroscopically stabilized mobile robot developed at Carnegie Mellon University. An internal pendulum serves as a counter weight for a drive motor that causes fore/aft motion, while a tilt-mechanism on a large gyroscope provides a mechanism for lateral actuation. In this paper we develop a detailed dynamic model for the Gyrover and use this model in an extended Kalman filter to estimate the complete state. A linearized version of the model is used to develop a state feedback controller. The design methodology is based on a semi-definite programming procedure which optimize the stability region subject to a set of linear matrix inequalities that capture stability and pole placement constraints. Finally, the controller design combined with the extended Kalman filter are verified on the prototype.
1999 | |
State feedback Stability Wheels Mobile robots Counting circuits Gyroscopes Linear feedback control systems Linear programming Kalman filters |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/20800 | |
Acceso abierto |
Sumario: | The Gyrover is a single wheel gyroscopically stabilized mobile robot developed at Carnegie Mellon University. An internal pendulum serves as a counter weight for a drive motor that causes fore/aft motion, while a tilt-mechanism on a large gyroscope provides a mechanism for lateral actuation. In this paper we develop a detailed dynamic model for the Gyrover and use this model in an extended Kalman filter to estimate the complete state. A linearized version of the model is used to develop a state feedback controller. The design methodology is based on a semi-definite programming procedure which optimize the stability region subject to a set of linear matrix inequalities that capture stability and pole placement constraints. Finally, the controller design combined with the extended Kalman filter are verified on the prototype. |
---|