Codon adaptation by synonymous mutations impacts the functional properties of the estrogen receptor-alpha protein in breast cancer cells

Clusan, Léa - Percevault, Frederic - Jullion, Emmanuelle - Le Goff, Pascale - Tiffoche, Christophe - Fernández Calero, Tamara - Métivier, Raphaël - Marín Gutiérrez, Mónica - Pakdel, Farzad - Michel, Denis - Flouriot, Gilles

Resumen:

Oestrogen receptor-alpha (ERa) positivity is intimately associated with the development of hormone-dependent breast cancers. A major challenge in the treatment of these cancers is to understand and overcome the mechanisms of endocrine resistance. Recently, two distinct translation programmes using specific transfer RNA (tRNA) repertoires and codon usage frequencies were evidenced during cell proliferation and differentiation. Considering the phenotype switch of cancer cells to more proliferating and less-differentiated states, we can speculate that the changes in the tRNA pool and codon usage that likely occur make the ERa coding sequence no longer adapted, impacting translational rate, co-translational folding and the resulting functional properties of the protein. To verify this hypothesis, we generated an ERa synonymous coding sequence whose codon usage was optimized to the frequencies observed in genes expressed specifically in proliferating cells and then investigated the functional properties of the encoded receptor. We demonstrate that such a codon adaptation restores ERa activities to levels observed in differentiated cells, including: (a) an enhanced contribution exerted by transactivation function 1 (AF1) in ERa transcriptional activity; (b) enhanced interactions with nuclear receptor corepressor 1 and 2 [NCoR1 and NCoR2 (also known as SMRT) respectively], promoting repressive capability; and (c) reduced interactions with SRC proto-oncogene, nonreceptor tyrosine kinase (Src) and phosphoinositide 3-kinase (PI3K) p85 kinases, inhibiting MAPK and AKT signalling pathway.


Detalles Bibliográficos
2023
Breast cancer
Codon usage
Co-translational folding
Endocrine resistance
Oestrogen receptor alpha
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/43174
Acceso abierto
Licencia Creative Commons Atribución (CC - By 4.0)
Resumen:
Sumario:Oestrogen receptor-alpha (ERa) positivity is intimately associated with the development of hormone-dependent breast cancers. A major challenge in the treatment of these cancers is to understand and overcome the mechanisms of endocrine resistance. Recently, two distinct translation programmes using specific transfer RNA (tRNA) repertoires and codon usage frequencies were evidenced during cell proliferation and differentiation. Considering the phenotype switch of cancer cells to more proliferating and less-differentiated states, we can speculate that the changes in the tRNA pool and codon usage that likely occur make the ERa coding sequence no longer adapted, impacting translational rate, co-translational folding and the resulting functional properties of the protein. To verify this hypothesis, we generated an ERa synonymous coding sequence whose codon usage was optimized to the frequencies observed in genes expressed specifically in proliferating cells and then investigated the functional properties of the encoded receptor. We demonstrate that such a codon adaptation restores ERa activities to levels observed in differentiated cells, including: (a) an enhanced contribution exerted by transactivation function 1 (AF1) in ERa transcriptional activity; (b) enhanced interactions with nuclear receptor corepressor 1 and 2 [NCoR1 and NCoR2 (also known as SMRT) respectively], promoting repressive capability; and (c) reduced interactions with SRC proto-oncogene, nonreceptor tyrosine kinase (Src) and phosphoinositide 3-kinase (PI3K) p85 kinases, inhibiting MAPK and AKT signalling pathway.