Retrieving a context tree from EEG data
Resumen:
It has been repeatedly conjectured that the brain retrieves statistical regularities from stimuli. Here, we present a new statistical approach allowing to address this conjecture. This approach is based on a new class of stochastic processes, namely, sequences of random objects driven by chains with memory of variable length.
2019 | |
Stochastic chains with memory of variable length Sequences of random objects driven by context tree models Stochastic modeling of EEG data |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/28659 | |
Acceso abierto | |
Licencia Creative Commons Atribución (CC - By 4.0) |
Resultados similares
-
Retrieving the structure of probabilistic sequences of auditory stimuli from EEG data
Autor(es):: Hernández, Noslen
Fecha de publicación:: (2021) -
Tree models :algorithms and information theoretic properties
Autor(es):: Martín, Alvaro
Fecha de publicación:: (2009) -
Refactoring an electric-market simulation software for massively parallel computations
Autor(es):: Seveso, Franco
Fecha de publicación:: (2022) -
Predicting the performance of a parallel heuristic solution for the Steiner Tree Problem
Autor(es):: Cancela, Héctor
Fecha de publicación:: (2003) -
Multistage stochastic capacitated discrete lot-sizing with lead times: problem definition, complexity analysis and tighter formulations
Autor(es):: Testuri, Carlos E.
Fecha de publicación:: (2020)