MAVD: A dataset for sound event detection in urban environments.
Resumen:
We describe the public release of a dataset for sound event detection in urban environments, namely MAVD, which is the first of a series of datasets planned within an ongoing research project for urban noise monitoring in Montevideo city, Uruguay. This release focuses on traffic noise, MAVD-traffic, as it is usually the predominant noise source in urban environments. An ontology for traffic sounds is proposed, which is the combination of a set of two taxonomies: vehicle types (e.g. car, bus) and vehicle components (e.g. engine, brakes), and a set of actions related to them (e.g. idling, accelerating). Thus, the proposed ontology allows for a flexible and detailed description of traffic sounds. We also provide a baseline of the performance of state-of-the-art sound event detection systems applied to the dataset.
2019 | |
SED database Traffic noise Urban sound |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/25415
https://doi.org/10.33682/kfmf-zv94 |
|
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
End–to–end convolutional neural networks for sound event detection in urban environments.
Autor(es):: Zinemanas, Pablo
Fecha de publicación:: (2019) -
Toward interpretable polyphonic sound event detection with attention maps based on local prototypes
Autor(es):: Zinemanas, Pablo
Fecha de publicación:: (2021) -
Urban sound & sight : Dataset and benchmark for audio-visual urban scene understanding
Autor(es):: Fuentes, Magdalena
Fecha de publicación:: (2022) -
Noise: sound intrusion and intimacy
Autor(es):: Domínguez Ruiz, Ana Lidia M.; Universidad Pedagógica Nacional
Fecha de publicación:: (2016) -
An interpretable deep learning model for automatic sound classification.
Autor(es):: Zinemanas, Pablo
Fecha de publicación:: (2021)