Extreme wind climate of Uruguay
Supervisor(es): Baker, Christopher J.
Resumen:
Uruguay belongs to the second most prone region of the world to the occurrence of severe convective storms, and to the region of South America that presents the highest frequency of occurrence of intense cyclogenesis events. Both meteorological processes produce high winds in the country, which represent a risk for the physical integrity and lives of the population, produce losses and damage to their properties and to critical infrastructure; impact the agronomic, energy, insurance and construction sectors. In particular, wind loading is the dominant environmental loading for buildings and structures in Uruguay. Extra-tropical cyclones can produce extensive wind damage and sustain high winds speeds in large parts of the country over several hours; however, research carried out for specific sectors of the country showed that intense convective activity had been responsible for most of the wind damage and incidences reported in their cases. The analysis of 4 years of meteorological data from 25 automatic weather stations distributed across the country also showed the significance of intense convective activity in the extreme wind climate of Uruguay: the highest wind gusts, as well as the highest 10min mean wind speeds, presented distinctive non-synoptic and transient characteristics, and usually occurred under intense convection. On the other hand, the geographic behaviour of high winds found differed from the geographic distribution presented in the official national extreme wind map, established by the national code UNIT 50-84 Wind actions on structures: the highest wind gusts would not occur along the South Atlantic and Río de la Plata coastlines and along the border with Argentina. Instead, more high wind events with higher wind speeds would be registered toward the northwest of the country. In this area, wind gusts of 40m/s were measured several times at 10m height at fixed locations in open terrain in just 4 years. In addition, a clear seasonal trend was found in wind gust speeds as well as in 10min mean wind speeds, with the highest wind speeds mainly occurring from October to March, and especially in November and February, in accordance with the behaviour of severe convective activity in the region. It could also be verified that intense convective activity as well as synoptic high wind events generate their highest wind speeds mainly from the southwest quadrant. A similar seasonal trend was found in the 10min mean wind speeds annual maxima measured along 35 years at the official meteorological station at Carrasco airport in Montevideo, capital city of Uruguay, implying that convective activity, apart from producing the highest wind gusts across all the country, would also dominate the maxima 10min mean wind speeds measured at 10m height for longer return periods. In addition, it could be observed that the extreme value distribution of 10min mean wind speeds annual maxima for Montevideo may be adequately modelled by a Gumbel distribution, while the UNIT 50-84 wind code proposes a Frechet distribution for wind gust speeds extreme statistics. The characteristics of non-synoptic high wind events, generally related to the occurrence of intense convective activity, should be considered in national and regional wind codes. In particular, extreme wind maps should be directly based in measurements of wind gust speeds, as there is not a direct relation between mean and wind gust speeds during severe convection. For these studies, the wind gust averaging period, the time response of the wind measuring system, as well as the quality of the wind data should be considered and carefully analysed. In order to recommend adequate models for the flow structure of strong convective outflows for national and regional wind codes, calculations, and physical and numerical simulations, additional research and full-scale measurements would be needed. Besides the international recognition of the necessity of more full-scale measurements, these models may need to consider regional characteristics. Other aspects of the Uruguayan wind code for actions on structures are also discussed, and the necessity of their review and update is emphasised.
Uruguay se encuentra en la segunda región del mundo de mayor ocurrencia de tormentas convectivas severas, y en la región de América del Sur con mayor frecuencia de formación de ciclones extratropicales intensos. Ambos procesos meteorológicos producen vientos intensos en el país, los cuales representan un riesgo para la integridad física de la población, producen pérdidas y daños materiales a sus propiedades y a infraestructuras críticas, e impactan sectores como el agronómico, de la energía, seguros y construcción del país. En particular, la acción del viento es la carga ambiental que domina el diseño estructural en Uruguay. Los ciclones extratropicales pueden generar importantes daños por viento y velocidades elevadas en una amplia zona del país durante varias horas. Sin embargo, estudios realizados para sectores específicos nacionales mostraron que la actividad convectiva intensa había sido responsable de la mayor parte de los daños e incidencias por viento informadas en esos casos. El análisis de 4 años de datos meteorológicos de 25 estaciones automáticas distribuidas en el país también indica que las tormentas convectivas intensas dominan su clima de vientos extremos: las ráfagas de viento más intensas y las mayores velocidades promediadas en 10min corresponden a eventos no sinópticos, con marcadas características transitorias, y generalmente ocurren durante actividad convectiva intensa. Por otra parte, se encontró que el comportamiento geográfico de los vientos fuertes difiere del indicado en el mapa nacional de vientos extremos dado por la norma de viento UNIT 50-84: las ráfagas de viento más intensas no ocurrirían cerca de la franja costera del país o de la frontera con Argentina, sino que se registrarían velocidades más intensas más frecuentemente hacia el noroeste del país. En varios puntos de esa zona se midieron varias veces ráfagas de viento de 40m/s a 10m de altura en 4 años.También se identificó una clara tendencia estacional tanto en las mayores velocidades de ráfaga como en las mayores velocidades medias en 10min, con valores más altos entre octubre y marzo, y sobre todo en noviembre y febrero, coincidiendo con el comportamiento de la actividad convectiva severa en la región. Así mismo, se verificó que tanto las tormentas convectivas intensas como los eventos de viento intenso de escala sinóptica producen sus vientos más fuertes del cuadrante suroeste. Se encontró una tendencia estacional similar en los máximos anuales en 10min medidos durante 35 años en la estación de Carrasco, Montevideo, implicando que la actividad convectiva también dominaría las máximas velocidades medias en 10min a 10m de altura, para periodos de retorno mayores. Adicionalmente, se pudo observar que la estadística de vientos extremos promediados en 10min para Montevideo puede ser modelada adecuadamente por una distribución Gumbel, mientras que la norma UNIT 50-84 propone una distribución Frechet para las ráfagas de viento. Las características de los vientos no sinópticos, generalmente relacionados a la ocurrencia de actividad convectiva intensa, y con marcadas características transitorias, deberían considerarse en las normas de acción del viento nacionales y regionales. Al no existir una relación directa entre la velocidad media y de ráfaga durante los mismos, los mapas de vientos extremos deberían basarse en medidas de velocidades de ráfagas. Para ello, los tiempos de promediación de las ráfagas, el tiempo de respuesta de los sistemas de medición y la calidad de los datos de viento utilizados deben ser tenidos en cuenta y analizados cuidadosamente. Para recomendar modelos de la estructura del flujo durante eventos convectivos intensos para normas de viento nacionales y regionales, cálculos y simulaciones físicas y numéricas, se necesitaría realizar investigaciones y medidas de velocidad adicionales.Internacionalmente se reconoce la necesidad de contar con más medidas de campo, y por otra parte, estos modelos pueden necesitar considerar características particulares de la región. Se discute también otros aspectos de la norma UNIT 50-84 y se enfatiza su necesidad de revisión y actualización.
2015 | |
Ciclones extratropicales Vientos intensos en Uruguay Tormentas convectivas Ciclones extratropicales Normas de viento Daños por viento VIENTO ENERGÍA EOLICA MECÁNICA DE LOS FLUIDOS APLICADA INGENIERÍA DEL VIENTO |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
http://hdl.handle.net/20.500.12008/8394 | |
Acceso abierto | |
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0) |
Sumario: | Uruguay belongs to the second most prone region of the world to the occurrence of severe convective storms, and to the region of South America that presents the highest frequency of occurrence of intense cyclogenesis events. Both meteorological processes produce high winds in the country, which represent a risk for the physical integrity and lives of the population, produce losses and damage to their properties and to critical infrastructure; impact the agronomic, energy, insurance and construction sectors. In particular, wind loading is the dominant environmental loading for buildings and structures in Uruguay. Extra-tropical cyclones can produce extensive wind damage and sustain high winds speeds in large parts of the country over several hours; however, research carried out for specific sectors of the country showed that intense convective activity had been responsible for most of the wind damage and incidences reported in their cases. The analysis of 4 years of meteorological data from 25 automatic weather stations distributed across the country also showed the significance of intense convective activity in the extreme wind climate of Uruguay: the highest wind gusts, as well as the highest 10min mean wind speeds, presented distinctive non-synoptic and transient characteristics, and usually occurred under intense convection. On the other hand, the geographic behaviour of high winds found differed from the geographic distribution presented in the official national extreme wind map, established by the national code UNIT 50-84 Wind actions on structures: the highest wind gusts would not occur along the South Atlantic and Río de la Plata coastlines and along the border with Argentina. Instead, more high wind events with higher wind speeds would be registered toward the northwest of the country. In this area, wind gusts of 40m/s were measured several times at 10m height at fixed locations in open terrain in just 4 years. In addition, a clear seasonal trend was found in wind gust speeds as well as in 10min mean wind speeds, with the highest wind speeds mainly occurring from October to March, and especially in November and February, in accordance with the behaviour of severe convective activity in the region. It could also be verified that intense convective activity as well as synoptic high wind events generate their highest wind speeds mainly from the southwest quadrant. A similar seasonal trend was found in the 10min mean wind speeds annual maxima measured along 35 years at the official meteorological station at Carrasco airport in Montevideo, capital city of Uruguay, implying that convective activity, apart from producing the highest wind gusts across all the country, would also dominate the maxima 10min mean wind speeds measured at 10m height for longer return periods. In addition, it could be observed that the extreme value distribution of 10min mean wind speeds annual maxima for Montevideo may be adequately modelled by a Gumbel distribution, while the UNIT 50-84 wind code proposes a Frechet distribution for wind gust speeds extreme statistics. The characteristics of non-synoptic high wind events, generally related to the occurrence of intense convective activity, should be considered in national and regional wind codes. In particular, extreme wind maps should be directly based in measurements of wind gust speeds, as there is not a direct relation between mean and wind gust speeds during severe convection. For these studies, the wind gust averaging period, the time response of the wind measuring system, as well as the quality of the wind data should be considered and carefully analysed. In order to recommend adequate models for the flow structure of strong convective outflows for national and regional wind codes, calculations, and physical and numerical simulations, additional research and full-scale measurements would be needed. Besides the international recognition of the necessity of more full-scale measurements, these models may need to consider regional characteristics. Other aspects of the Uruguayan wind code for actions on structures are also discussed, and the necessity of their review and update is emphasised. |
---|