Computación de alto desempeño en plataformas cloud para la detección de rayos cósmicos en imágenes de telescopio
Supervisor(es): Nesmachnow, Sergio - Tancredi, Gonzalo
Resumen:
Los rayos cósmicos son partículas cargadas de energía y por su naturaleza son especialmente dañinos para los dispositivos electrónicos. Este tipo de rayos pueden ser medidos por instrumentos a nivel terrestre, excepto en algunas regiones debido a anomalías magnéticas en la atmósfera. Para estos casos se pueden utilizar mediciones de dispositivos que están por fuera de la atmósfera, como el Telescopio Espacial Hubble (HST). Los instrumentos a bordo del HST realizan tareas de mantenimiento regulares, que implican obtener imágenes con el lente tapado denominadas darks. Estas imágenes registran el impacto de los rayos cósmicos como consecuencia de la radiación cósmica. Se propone analizar el conjunto total de imágenes de tipo dark provisto por el Space Telescope Science Institute (STScI) correspondientes a los instrumentos del HST para estudiar el estado actual del campo magnético de la Tierra. En este trabajo se presentan tres alternativas para construir una arquitectura que permite procesar los más de 15 TB de información en formato de imágenes: MapReduce clásico con Hadoop, una solución combinando tecnologías del ecosistema de Apache Mesos y una arquitectura diseñada específicamente para correr en el ecosistema de Microsoft Azure. El punto de partida de este trabajo es un prototipo desarrollado por la Facultad de Ciencias para limpiar las imágenes que se encuentran en formato IRAF (Image Reduction and Analysis Facility) y obtener la información acerca de los rayos cósmicos en diferentes posicionamientos de los instrumentos del HST. El resultado final de esta tesis supera en 20 veces el tamaño, en términos de volumen de datos, al prototipo inicial. La contribución principal de este trabajo es la descripción e implementación de una arquitectura paralela que permite acelerar los cálculos de forma drástica, con respecto a la aproximación original al problema.
2017 | |
Cloud Computing HPC Rayos Cósmicos Hubble MapReduce Hadoop Mesos Azure Astronomía |
|
Español | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/33383 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807523182578499584 |
---|---|
author | Schnyder, Germán |
author_facet | Schnyder, Germán |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 36c32e9c6da50e6d55578c16944ef7f6 1996b8461bc290aef6a27d78c67b6b52 81dac1a8426fb9d328c3558d2ee079da |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/33383/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/33383/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/33383/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/33383/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/33383/1/Sch17.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Schnyder Germán, Universidad de la República (Uruguay). Facultad de Ingeniería. |
dc.creator.advisor.none.fl_str_mv | Nesmachnow, Sergio Tancredi, Gonzalo |
dc.creator.none.fl_str_mv | Schnyder, Germán |
dc.date.accessioned.none.fl_str_mv | 2022-08-29T12:13:21Z |
dc.date.available.none.fl_str_mv | 2022-08-29T12:13:21Z |
dc.date.issued.none.fl_str_mv | 2017 |
dc.description.abstract.none.fl_txt_mv | Los rayos cósmicos son partículas cargadas de energía y por su naturaleza son especialmente dañinos para los dispositivos electrónicos. Este tipo de rayos pueden ser medidos por instrumentos a nivel terrestre, excepto en algunas regiones debido a anomalías magnéticas en la atmósfera. Para estos casos se pueden utilizar mediciones de dispositivos que están por fuera de la atmósfera, como el Telescopio Espacial Hubble (HST). Los instrumentos a bordo del HST realizan tareas de mantenimiento regulares, que implican obtener imágenes con el lente tapado denominadas darks. Estas imágenes registran el impacto de los rayos cósmicos como consecuencia de la radiación cósmica. Se propone analizar el conjunto total de imágenes de tipo dark provisto por el Space Telescope Science Institute (STScI) correspondientes a los instrumentos del HST para estudiar el estado actual del campo magnético de la Tierra. En este trabajo se presentan tres alternativas para construir una arquitectura que permite procesar los más de 15 TB de información en formato de imágenes: MapReduce clásico con Hadoop, una solución combinando tecnologías del ecosistema de Apache Mesos y una arquitectura diseñada específicamente para correr en el ecosistema de Microsoft Azure. El punto de partida de este trabajo es un prototipo desarrollado por la Facultad de Ciencias para limpiar las imágenes que se encuentran en formato IRAF (Image Reduction and Analysis Facility) y obtener la información acerca de los rayos cósmicos en diferentes posicionamientos de los instrumentos del HST. El resultado final de esta tesis supera en 20 veces el tamaño, en términos de volumen de datos, al prototipo inicial. La contribución principal de este trabajo es la descripción e implementación de una arquitectura paralela que permite acelerar los cálculos de forma drástica, con respecto a la aproximación original al problema. |
dc.format.extent.es.fl_str_mv | 82 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Schnyder, G. Computación de alto desempeño en plataformas cloud para la detección de rayos cósmicos en imágenes de telescopio [en línea] Tesis de maestría. Montevideo : Udelar. FI. INCO : PEDECIBA. Área Informática, 2017. |
dc.identifier.issn.none.fl_str_mv | 1688-2792 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/33383 |
dc.language.iso.none.fl_str_mv | es spa |
dc.publisher.es.fl_str_mv | Udelar. FI. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Cloud Computing HPC Rayos Cósmicos Hubble MapReduce Hadoop Mesos Azure Astronomía |
dc.title.none.fl_str_mv | Computación de alto desempeño en plataformas cloud para la detección de rayos cósmicos en imágenes de telescopio |
dc.type.es.fl_str_mv | Tesis de maestría |
dc.type.none.fl_str_mv | info:eu-repo/semantics/masterThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | Los rayos cósmicos son partículas cargadas de energía y por su naturaleza son especialmente dañinos para los dispositivos electrónicos. Este tipo de rayos pueden ser medidos por instrumentos a nivel terrestre, excepto en algunas regiones debido a anomalías magnéticas en la atmósfera. Para estos casos se pueden utilizar mediciones de dispositivos que están por fuera de la atmósfera, como el Telescopio Espacial Hubble (HST). Los instrumentos a bordo del HST realizan tareas de mantenimiento regulares, que implican obtener imágenes con el lente tapado denominadas darks. Estas imágenes registran el impacto de los rayos cósmicos como consecuencia de la radiación cósmica. Se propone analizar el conjunto total de imágenes de tipo dark provisto por el Space Telescope Science Institute (STScI) correspondientes a los instrumentos del HST para estudiar el estado actual del campo magnético de la Tierra. En este trabajo se presentan tres alternativas para construir una arquitectura que permite procesar los más de 15 TB de información en formato de imágenes: MapReduce clásico con Hadoop, una solución combinando tecnologías del ecosistema de Apache Mesos y una arquitectura diseñada específicamente para correr en el ecosistema de Microsoft Azure. El punto de partida de este trabajo es un prototipo desarrollado por la Facultad de Ciencias para limpiar las imágenes que se encuentran en formato IRAF (Image Reduction and Analysis Facility) y obtener la información acerca de los rayos cósmicos en diferentes posicionamientos de los instrumentos del HST. El resultado final de esta tesis supera en 20 veces el tamaño, en términos de volumen de datos, al prototipo inicial. La contribución principal de este trabajo es la descripción e implementación de una arquitectura paralela que permite acelerar los cálculos de forma drástica, con respecto a la aproximación original al problema. |
eu_rights_str_mv | openAccess |
format | masterThesis |
id | COLIBRI_05d4389baf06baeaf3011166a55469fb |
identifier_str_mv | Schnyder, G. Computación de alto desempeño en plataformas cloud para la detección de rayos cósmicos en imágenes de telescopio [en línea] Tesis de maestría. Montevideo : Udelar. FI. INCO : PEDECIBA. Área Informática, 2017. 1688-2792 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | spa |
language_invalid_str_mv | es |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/33383 |
publishDate | 2017 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Schnyder Germán, Universidad de la República (Uruguay). Facultad de Ingeniería.2022-08-29T12:13:21Z2022-08-29T12:13:21Z2017Schnyder, G. Computación de alto desempeño en plataformas cloud para la detección de rayos cósmicos en imágenes de telescopio [en línea] Tesis de maestría. Montevideo : Udelar. FI. INCO : PEDECIBA. Área Informática, 2017.1688-2792https://hdl.handle.net/20.500.12008/33383Los rayos cósmicos son partículas cargadas de energía y por su naturaleza son especialmente dañinos para los dispositivos electrónicos. Este tipo de rayos pueden ser medidos por instrumentos a nivel terrestre, excepto en algunas regiones debido a anomalías magnéticas en la atmósfera. Para estos casos se pueden utilizar mediciones de dispositivos que están por fuera de la atmósfera, como el Telescopio Espacial Hubble (HST). Los instrumentos a bordo del HST realizan tareas de mantenimiento regulares, que implican obtener imágenes con el lente tapado denominadas darks. Estas imágenes registran el impacto de los rayos cósmicos como consecuencia de la radiación cósmica. Se propone analizar el conjunto total de imágenes de tipo dark provisto por el Space Telescope Science Institute (STScI) correspondientes a los instrumentos del HST para estudiar el estado actual del campo magnético de la Tierra. En este trabajo se presentan tres alternativas para construir una arquitectura que permite procesar los más de 15 TB de información en formato de imágenes: MapReduce clásico con Hadoop, una solución combinando tecnologías del ecosistema de Apache Mesos y una arquitectura diseñada específicamente para correr en el ecosistema de Microsoft Azure. El punto de partida de este trabajo es un prototipo desarrollado por la Facultad de Ciencias para limpiar las imágenes que se encuentran en formato IRAF (Image Reduction and Analysis Facility) y obtener la información acerca de los rayos cósmicos en diferentes posicionamientos de los instrumentos del HST. El resultado final de esta tesis supera en 20 veces el tamaño, en términos de volumen de datos, al prototipo inicial. La contribución principal de este trabajo es la descripción e implementación de una arquitectura paralela que permite acelerar los cálculos de forma drástica, con respecto a la aproximación original al problema.Submitted by Machado Jimena (jmachado@fing.edu.uy) on 2022-08-23T20:45:09Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Sch17.pdf: 11692281 bytes, checksum: 81dac1a8426fb9d328c3558d2ee079da (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-08-24T18:02:38Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Sch17.pdf: 11692281 bytes, checksum: 81dac1a8426fb9d328c3558d2ee079da (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-08-29T12:13:21Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Sch17.pdf: 11692281 bytes, checksum: 81dac1a8426fb9d328c3558d2ee079da (MD5) Previous issue date: 201782 p.application/pdfesspaUdelar. FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Cloud ComputingHPCRayos CósmicosHubbleMapReduceHadoopMesosAzureAstronomíaComputación de alto desempeño en plataformas cloud para la detección de rayos cósmicos en imágenes de telescopioTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaSchnyder, GermánNesmachnow, SergioTancredi, GonzaloUniversidad de la República (Uruguay). Facultad de IngenieríaMagíster en InformáticaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/33383/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/33383/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/33383/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/33383/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALSch17.pdfSch17.pdfapplication/pdf11692281http://localhost:8080/xmlui/bitstream/20.500.12008/33383/1/Sch17.pdf81dac1a8426fb9d328c3558d2ee079daMD5120.500.12008/333832022-08-29 09:13:21.337oai:colibri.udelar.edu.uy:20.500.12008/33383VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:28.294719COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Computación de alto desempeño en plataformas cloud para la detección de rayos cósmicos en imágenes de telescopio Schnyder, Germán Cloud Computing HPC Rayos Cósmicos Hubble MapReduce Hadoop Mesos Azure Astronomía |
status_str | acceptedVersion |
title | Computación de alto desempeño en plataformas cloud para la detección de rayos cósmicos en imágenes de telescopio |
title_full | Computación de alto desempeño en plataformas cloud para la detección de rayos cósmicos en imágenes de telescopio |
title_fullStr | Computación de alto desempeño en plataformas cloud para la detección de rayos cósmicos en imágenes de telescopio |
title_full_unstemmed | Computación de alto desempeño en plataformas cloud para la detección de rayos cósmicos en imágenes de telescopio |
title_short | Computación de alto desempeño en plataformas cloud para la detección de rayos cósmicos en imágenes de telescopio |
title_sort | Computación de alto desempeño en plataformas cloud para la detección de rayos cósmicos en imágenes de telescopio |
topic | Cloud Computing HPC Rayos Cósmicos Hubble MapReduce Hadoop Mesos Azure Astronomía |
url | https://hdl.handle.net/20.500.12008/33383 |