An explicit Waldspurger formula for Hilbert modular forms II
Resumen:
We describe a construction of preimages for the Shimura map on Hilbert modular forms using generalized theta series, and give an explicit Waldspurger type formula relating their Fourier coefficients to central values of twisted L-functions. This formula extends our previous work, allowing to compute these central values when the main central value vanishes.
2020 | |
Explicit Waldspurger formula Hilbert modular forms Shimura map |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/41662 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0) |
_version_ | 1807522805119451136 |
---|---|
author | Nicolás, Sirolli |
author2 | Gonzalo, Tornaría |
author2_role | author |
author_facet | Nicolás, Sirolli Gonzalo, Tornaría |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a9ac1bac94fe38dbe560422d834a993f 506a4fb14a9b3cd9312f046a753a8359 27d85011139cdc22b845da52c980f01f 0b5870a3488a5bfab1bae0b8866a61d6 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/41662/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/41662/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/41662/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/41662/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/41662/1/101007s1113902000280z.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Nicolás Sirolli Gonzalo Tornaría, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática. |
dc.creator.none.fl_str_mv | Nicolás, Sirolli Gonzalo, Tornaría |
dc.date.accessioned.none.fl_str_mv | 2023-12-04T19:39:15Z |
dc.date.available.none.fl_str_mv | 2023-12-04T19:39:15Z |
dc.date.issued.none.fl_str_mv | 2020 |
dc.description.abstract.none.fl_txt_mv | We describe a construction of preimages for the Shimura map on Hilbert modular forms using generalized theta series, and give an explicit Waldspurger type formula relating their Fourier coefficients to central values of twisted L-functions. This formula extends our previous work, allowing to compute these central values when the main central value vanishes. |
dc.description.es.fl_txt_mv | Publicado también en: The Ramanujan Journal, 2021, 55: 1189-1212. DOI: 10.1007/s11139-020-00280-z. |
dc.format.extent.es.fl_str_mv | 19 h. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Nicolás, S y Gonzalo, T. "An explicit Waldspurger formula for Hilbert modular forms II" [Preprint]. Publicado en: Mathematics (Number Theory). 2020, arXiv:1812.11635, jul 2020, 19 h. DOI: 10.48550/arXiv.1812.11635. |
dc.identifier.doi.none.fl_str_mv | 10.48550/arXiv.1812.11635 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/41662 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | arXiv |
dc.relation.ispartof.es.fl_str_mv | Mathematics (Number Theory), arXiv:1812.11635, jul 2020, pp 1-19. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Explicit Waldspurger formula Hilbert modular forms Shimura map |
dc.title.none.fl_str_mv | An explicit Waldspurger formula for Hilbert modular forms II |
dc.type.es.fl_str_mv | Preprint |
dc.type.none.fl_str_mv | info:eu-repo/semantics/preprint |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/submittedVersion |
description | Publicado también en: The Ramanujan Journal, 2021, 55: 1189-1212. DOI: 10.1007/s11139-020-00280-z. |
eu_rights_str_mv | openAccess |
format | preprint |
id | COLIBRI_04ed329bcc0c293c5fb1f8f02dd1b15f |
identifier_str_mv | Nicolás, S y Gonzalo, T. "An explicit Waldspurger formula for Hilbert modular forms II" [Preprint]. Publicado en: Mathematics (Number Theory). 2020, arXiv:1812.11635, jul 2020, 19 h. DOI: 10.48550/arXiv.1812.11635. 10.48550/arXiv.1812.11635 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/41662 |
publishDate | 2020 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0) |
spelling | Nicolás SirolliGonzalo Tornaría, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.2023-12-04T19:39:15Z2023-12-04T19:39:15Z2020Nicolás, S y Gonzalo, T. "An explicit Waldspurger formula for Hilbert modular forms II" [Preprint]. Publicado en: Mathematics (Number Theory). 2020, arXiv:1812.11635, jul 2020, 19 h. DOI: 10.48550/arXiv.1812.11635.https://hdl.handle.net/20.500.12008/4166210.48550/arXiv.1812.11635Publicado también en: The Ramanujan Journal, 2021, 55: 1189-1212. DOI: 10.1007/s11139-020-00280-z.We describe a construction of preimages for the Shimura map on Hilbert modular forms using generalized theta series, and give an explicit Waldspurger type formula relating their Fourier coefficients to central values of twisted L-functions. This formula extends our previous work, allowing to compute these central values when the main central value vanishes.Submitted by Parodi Mónica (mparodi@fcien.edu.uy) on 2023-11-29T17:49:18Z No. of bitstreams: 2 license_rdf: 26308 bytes, checksum: 27d85011139cdc22b845da52c980f01f (MD5) 101007s1113902000280z.pdf: 513217 bytes, checksum: 0b5870a3488a5bfab1bae0b8866a61d6 (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2023-12-04T19:32:24Z (GMT) No. of bitstreams: 2 license_rdf: 26308 bytes, checksum: 27d85011139cdc22b845da52c980f01f (MD5) 101007s1113902000280z.pdf: 513217 bytes, checksum: 0b5870a3488a5bfab1bae0b8866a61d6 (MD5)Made available in DSpace by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2023-12-04T19:39:15Z (GMT). No. of bitstreams: 2 license_rdf: 26308 bytes, checksum: 27d85011139cdc22b845da52c980f01f (MD5) 101007s1113902000280z.pdf: 513217 bytes, checksum: 0b5870a3488a5bfab1bae0b8866a61d6 (MD5) Previous issue date: 202019 h.application/pdfenengarXivMathematics (Number Theory), arXiv:1812.11635, jul 2020, pp 1-19.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0)Explicit Waldspurger formulaHilbert modular formsShimura mapAn explicit Waldspurger formula for Hilbert modular forms IIPreprintinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/submittedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaNicolás, SirolliGonzalo, TornaríaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/41662/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/41662/2/license_urla9ac1bac94fe38dbe560422d834a993fMD52license_textlicense_texttext/html; charset=utf-818403http://localhost:8080/xmlui/bitstream/20.500.12008/41662/3/license_text506a4fb14a9b3cd9312f046a753a8359MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-826308http://localhost:8080/xmlui/bitstream/20.500.12008/41662/4/license_rdf27d85011139cdc22b845da52c980f01fMD54ORIGINAL101007s1113902000280z.pdf101007s1113902000280z.pdfapplication/pdf513217http://localhost:8080/xmlui/bitstream/20.500.12008/41662/1/101007s1113902000280z.pdf0b5870a3488a5bfab1bae0b8866a61d6MD5120.500.12008/416622023-12-04 16:39:15.648oai:colibri.udelar.edu.uy:20.500.12008/41662VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:29:16.751860COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | An explicit Waldspurger formula for Hilbert modular forms II Nicolás, Sirolli Explicit Waldspurger formula Hilbert modular forms Shimura map |
status_str | submittedVersion |
title | An explicit Waldspurger formula for Hilbert modular forms II |
title_full | An explicit Waldspurger formula for Hilbert modular forms II |
title_fullStr | An explicit Waldspurger formula for Hilbert modular forms II |
title_full_unstemmed | An explicit Waldspurger formula for Hilbert modular forms II |
title_short | An explicit Waldspurger formula for Hilbert modular forms II |
title_sort | An explicit Waldspurger formula for Hilbert modular forms II |
topic | Explicit Waldspurger formula Hilbert modular forms Shimura map |
url | https://hdl.handle.net/20.500.12008/41662 |