An explicit Waldspurger formula for Hilbert modular forms II

Nicolás, Sirolli - Gonzalo, Tornaría

Resumen:

We describe a construction of preimages for the Shimura map on Hilbert modular forms using generalized theta series, and give an explicit Waldspurger type formula relating their Fourier coefficients to central values of twisted L-functions. This formula extends our previous work, allowing to compute these central values when the main central value vanishes.


Detalles Bibliográficos
2020
Explicit Waldspurger formula
Hilbert modular forms
Shimura map
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/41662
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0)
_version_ 1807522805119451136
author Nicolás, Sirolli
author2 Gonzalo, Tornaría
author2_role author
author_facet Nicolás, Sirolli
Gonzalo, Tornaría
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a9ac1bac94fe38dbe560422d834a993f
506a4fb14a9b3cd9312f046a753a8359
27d85011139cdc22b845da52c980f01f
0b5870a3488a5bfab1bae0b8866a61d6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/41662/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/41662/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/41662/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/41662/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/41662/1/101007s1113902000280z.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Nicolás Sirolli
Gonzalo Tornaría, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.
dc.creator.none.fl_str_mv Nicolás, Sirolli
Gonzalo, Tornaría
dc.date.accessioned.none.fl_str_mv 2023-12-04T19:39:15Z
dc.date.available.none.fl_str_mv 2023-12-04T19:39:15Z
dc.date.issued.none.fl_str_mv 2020
dc.description.abstract.none.fl_txt_mv We describe a construction of preimages for the Shimura map on Hilbert modular forms using generalized theta series, and give an explicit Waldspurger type formula relating their Fourier coefficients to central values of twisted L-functions. This formula extends our previous work, allowing to compute these central values when the main central value vanishes.
dc.description.es.fl_txt_mv Publicado también en: The Ramanujan Journal, 2021, 55: 1189-1212. DOI: 10.1007/s11139-020-00280-z.
dc.format.extent.es.fl_str_mv 19 h.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Nicolás, S y Gonzalo, T. "An explicit Waldspurger formula for Hilbert modular forms II" [Preprint]. Publicado en: Mathematics (Number Theory). 2020, arXiv:1812.11635, jul 2020, 19 h. DOI: 10.48550/arXiv.1812.11635.
dc.identifier.doi.none.fl_str_mv 10.48550/arXiv.1812.11635
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/41662
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv arXiv
dc.relation.ispartof.es.fl_str_mv Mathematics (Number Theory), arXiv:1812.11635, jul 2020, pp 1-19.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Explicit Waldspurger formula
Hilbert modular forms
Shimura map
dc.title.none.fl_str_mv An explicit Waldspurger formula for Hilbert modular forms II
dc.type.es.fl_str_mv Preprint
dc.type.none.fl_str_mv info:eu-repo/semantics/preprint
dc.type.version.none.fl_str_mv info:eu-repo/semantics/submittedVersion
description Publicado también en: The Ramanujan Journal, 2021, 55: 1189-1212. DOI: 10.1007/s11139-020-00280-z.
eu_rights_str_mv openAccess
format preprint
id COLIBRI_04ed329bcc0c293c5fb1f8f02dd1b15f
identifier_str_mv Nicolás, S y Gonzalo, T. "An explicit Waldspurger formula for Hilbert modular forms II" [Preprint]. Publicado en: Mathematics (Number Theory). 2020, arXiv:1812.11635, jul 2020, 19 h. DOI: 10.48550/arXiv.1812.11635.
10.48550/arXiv.1812.11635
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/41662
publishDate 2020
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0)
spelling Nicolás SirolliGonzalo Tornaría, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.2023-12-04T19:39:15Z2023-12-04T19:39:15Z2020Nicolás, S y Gonzalo, T. "An explicit Waldspurger formula for Hilbert modular forms II" [Preprint]. Publicado en: Mathematics (Number Theory). 2020, arXiv:1812.11635, jul 2020, 19 h. DOI: 10.48550/arXiv.1812.11635.https://hdl.handle.net/20.500.12008/4166210.48550/arXiv.1812.11635Publicado también en: The Ramanujan Journal, 2021, 55: 1189-1212. DOI: 10.1007/s11139-020-00280-z.We describe a construction of preimages for the Shimura map on Hilbert modular forms using generalized theta series, and give an explicit Waldspurger type formula relating their Fourier coefficients to central values of twisted L-functions. This formula extends our previous work, allowing to compute these central values when the main central value vanishes.Submitted by Parodi Mónica (mparodi@fcien.edu.uy) on 2023-11-29T17:49:18Z No. of bitstreams: 2 license_rdf: 26308 bytes, checksum: 27d85011139cdc22b845da52c980f01f (MD5) 101007s1113902000280z.pdf: 513217 bytes, checksum: 0b5870a3488a5bfab1bae0b8866a61d6 (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2023-12-04T19:32:24Z (GMT) No. of bitstreams: 2 license_rdf: 26308 bytes, checksum: 27d85011139cdc22b845da52c980f01f (MD5) 101007s1113902000280z.pdf: 513217 bytes, checksum: 0b5870a3488a5bfab1bae0b8866a61d6 (MD5)Made available in DSpace by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2023-12-04T19:39:15Z (GMT). No. of bitstreams: 2 license_rdf: 26308 bytes, checksum: 27d85011139cdc22b845da52c980f01f (MD5) 101007s1113902000280z.pdf: 513217 bytes, checksum: 0b5870a3488a5bfab1bae0b8866a61d6 (MD5) Previous issue date: 202019 h.application/pdfenengarXivMathematics (Number Theory), arXiv:1812.11635, jul 2020, pp 1-19.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Compartir Igual (CC - By-NC-SA 4.0)Explicit Waldspurger formulaHilbert modular formsShimura mapAn explicit Waldspurger formula for Hilbert modular forms IIPreprintinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/submittedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaNicolás, SirolliGonzalo, TornaríaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/41662/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/41662/2/license_urla9ac1bac94fe38dbe560422d834a993fMD52license_textlicense_texttext/html; charset=utf-818403http://localhost:8080/xmlui/bitstream/20.500.12008/41662/3/license_text506a4fb14a9b3cd9312f046a753a8359MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-826308http://localhost:8080/xmlui/bitstream/20.500.12008/41662/4/license_rdf27d85011139cdc22b845da52c980f01fMD54ORIGINAL101007s1113902000280z.pdf101007s1113902000280z.pdfapplication/pdf513217http://localhost:8080/xmlui/bitstream/20.500.12008/41662/1/101007s1113902000280z.pdf0b5870a3488a5bfab1bae0b8866a61d6MD5120.500.12008/416622023-12-04 16:39:15.648oai:colibri.udelar.edu.uy:20.500.12008/41662VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:29:16.751860COLIBRI - Universidad de la Repúblicafalse
spellingShingle An explicit Waldspurger formula for Hilbert modular forms II
Nicolás, Sirolli
Explicit Waldspurger formula
Hilbert modular forms
Shimura map
status_str submittedVersion
title An explicit Waldspurger formula for Hilbert modular forms II
title_full An explicit Waldspurger formula for Hilbert modular forms II
title_fullStr An explicit Waldspurger formula for Hilbert modular forms II
title_full_unstemmed An explicit Waldspurger formula for Hilbert modular forms II
title_short An explicit Waldspurger formula for Hilbert modular forms II
title_sort An explicit Waldspurger formula for Hilbert modular forms II
topic Explicit Waldspurger formula
Hilbert modular forms
Shimura map
url https://hdl.handle.net/20.500.12008/41662