One model to find them all deep learning for multivariate time-series anomaly detection in mobile network data
Resumen:
Network monitoring data generally consists of hundreds of counters periodically collected in the form of time-series, resulting in a complex-to-analyze multivariate time-series (MTS) process. Traditional time-series anomaly detection methods target univariate time-series analysis, which makes the MTS analysis cumbersome and prohibitively complex. We present DC-VAE (Dilated Convolutional -Variational Auto Encoder), a novel approach to anomaly detection in MTS data, leveraging convolutional neural networks (CNNs) and variational autoencoders (VAEs). DC-VAE detects anomalies in MTS data through a single model, exploiting temporal information without sacrificing computational and memory resources. In particular, instead of using recursive neural networks, large causal filters, or many layers, DC-VAE relies on Dilated Convolutions (DC) to capture long and short-term phenomena in the data. We evaluate DC-VAE on the detection of anomalies in the TELCO TELeCOmmunication-networks dataset, a large-scale, multi-dimensional network monitoring dataset collected at an operational mobile Internet Service Provider (ISP), where anomalous events were manually labeled by experts during seven months, at a five-minutes granularity. We benchmark DC-VAE against a broad set of traditional time-series anomaly detectors from the signal processing and machine learning domains. We also evaluate DC-VAE in open, publicly available datasets, comparing its performance against other multivariate anomaly detectors based on deep learning generative models. Results confirm the advantages of DC-VAE, both in terms of MTS data modeling, as well as for anomaly detection. For the sake of reproducibility and as an additional contribution, we make the TELCO dataset publicly available to the community and openly release the code implementing DC-VAE.
2023 | |
Este trabajo ha sido parcialmente apoyado por la ANII-FMV, Proyecto con referencia FMV-1-2019-1-155850 Anomaly Detection with Continual and Streaming Machine Learning on Big Data Telecommunications Networks, por CSIC Proyecto I+D con referencia 22520220100371UD Anomaly Detection in Time Series : Generalization and Domain Change Adaptation, por Telefónica, y por el Austrian FFG ICT-of-the-Future project DynAISEC – Adaptive AI/ML for Dynamic Cybersecurity Systems – project ID 887504. Gastón García fue apoyado por la beca ANII POS-FMV-2020-1-1009239, así como por CSIC, en el marco del programa Movilidad e Intercambios Académicos 2022. | |
Anomaly detection Detectors Data models Analytical models Predictive models Deep learning Convolution Deep Learning Multivariate Time-Series Variational Auto Encoder Dilated Convolution TELCO Open Dataset |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://ieeexplore.ieee.org/document/10345720
https://hdl.handle.net/20.500.12008/41900 |
|
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807522940063842304 |
---|---|
author | García González, Gastón |
author2 | Martínez Tagliafico, Sergio Fernández, Alicia Gómez, Gabriel Acuña, José Casas, Pedro |
author2_role | author author author author author |
author_facet | García González, Gastón Martínez Tagliafico, Sergio Fernández, Alicia Gómez, Gabriel Acuña, José Casas, Pedro |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 3bf72aba7589cf23c5101bece94f4503 489f03e71d39068f329bdec8798bce58 4e79dbb885f64c658b3145e602ebd7c4 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/41900/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/41900/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/41900/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/41900/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/41900/1/GMFGAC23.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | García González Gastón, Universidad de la República (Uruguay). Facultad de Ingeniería. Martínez Tagliafico Sergio, Universidad de la República (Uruguay). Facultad de Ingeniería. Fernández Alicia, Universidad de la República (Uruguay). Facultad de Ingeniería. Gómez Gabriel, Universidad de la República (Uruguay). Facultad de Ingeniería. Acuña José, Telefónica Uruguay. Casas Pedro, Austrian Institute of Technology Vienna, Austria. |
dc.creator.none.fl_str_mv | García González, Gastón Martínez Tagliafico, Sergio Fernández, Alicia Gómez, Gabriel Acuña, José Casas, Pedro |
dc.date.accessioned.none.fl_str_mv | 2023-12-19T13:24:57Z |
dc.date.available.none.fl_str_mv | 2023-12-19T13:24:57Z |
dc.date.issued.none.fl_str_mv | 2023 |
dc.description.abstract.none.fl_txt_mv | Network monitoring data generally consists of hundreds of counters periodically collected in the form of time-series, resulting in a complex-to-analyze multivariate time-series (MTS) process. Traditional time-series anomaly detection methods target univariate time-series analysis, which makes the MTS analysis cumbersome and prohibitively complex. We present DC-VAE (Dilated Convolutional -Variational Auto Encoder), a novel approach to anomaly detection in MTS data, leveraging convolutional neural networks (CNNs) and variational autoencoders (VAEs). DC-VAE detects anomalies in MTS data through a single model, exploiting temporal information without sacrificing computational and memory resources. In particular, instead of using recursive neural networks, large causal filters, or many layers, DC-VAE relies on Dilated Convolutions (DC) to capture long and short-term phenomena in the data. We evaluate DC-VAE on the detection of anomalies in the TELCO TELeCOmmunication-networks dataset, a large-scale, multi-dimensional network monitoring dataset collected at an operational mobile Internet Service Provider (ISP), where anomalous events were manually labeled by experts during seven months, at a five-minutes granularity. We benchmark DC-VAE against a broad set of traditional time-series anomaly detectors from the signal processing and machine learning domains. We also evaluate DC-VAE in open, publicly available datasets, comparing its performance against other multivariate anomaly detectors based on deep learning generative models. Results confirm the advantages of DC-VAE, both in terms of MTS data modeling, as well as for anomaly detection. For the sake of reproducibility and as an additional contribution, we make the TELCO dataset publicly available to the community and openly release the code implementing DC-VAE. |
dc.description.es.fl_txt_mv | Transferencia tecnológica. Grupo de investigación Detección de anomalías en series de tiempo, Facultad de Ingeniería. Instituto de Ingeniería Eléctrica. |
dc.description.sponsorship.none.fl_txt_mv | Este trabajo ha sido parcialmente apoyado por la ANII-FMV, Proyecto con referencia FMV-1-2019-1-155850 Anomaly Detection with Continual and Streaming Machine Learning on Big Data Telecommunications Networks, por CSIC Proyecto I+D con referencia 22520220100371UD Anomaly Detection in Time Series : Generalization and Domain Change Adaptation, por Telefónica, y por el Austrian FFG ICT-of-the-Future project DynAISEC – Adaptive AI/ML for Dynamic Cybersecurity Systems – project ID 887504. Gastón García fue apoyado por la beca ANII POS-FMV-2020-1-1009239, así como por CSIC, en el marco del programa Movilidad e Intercambios Académicos 2022. |
dc.format.extent.es.fl_str_mv | 16 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | García González, G., Martínez Tagliafico, S., Fernández, A. y otros. "One model to find them all deep learning for multivariate time-series anomaly detection in mobile network data". IEEE Transactions on Network and Service Management (Early Access). [en línea]. 2023, pp. 1-16. DOI: 10.1109/TNSM.2023.3340146. |
dc.identifier.doi.none.fl_str_mv | 10.1109/TNSM.2023.3340146 |
dc.identifier.uri.none.fl_str_mv | https://ieeexplore.ieee.org/document/10345720 https://hdl.handle.net/20.500.12008/41900 |
dc.language.iso.none.fl_str_mv | en eng |
dc.relation.ispartof.es.fl_str_mv | IEEE Transactions on Network and Service Management (Early Access), dec. 2023, pp. 1-16. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Anomaly detection Detectors Data models Analytical models Predictive models Deep learning Convolution Deep Learning Multivariate Time-Series Variational Auto Encoder Dilated Convolution TELCO Open Dataset |
dc.title.none.fl_str_mv | One model to find them all deep learning for multivariate time-series anomaly detection in mobile network data |
dc.type.es.fl_str_mv | Artículo |
dc.type.none.fl_str_mv | info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Transferencia tecnológica. Grupo de investigación Detección de anomalías en series de tiempo, Facultad de Ingeniería. Instituto de Ingeniería Eléctrica. |
eu_rights_str_mv | openAccess |
format | article |
id | COLIBRI_0351b1fdc14172c2511117123a2ca51c |
identifier_str_mv | García González, G., Martínez Tagliafico, S., Fernández, A. y otros. "One model to find them all deep learning for multivariate time-series anomaly detection in mobile network data". IEEE Transactions on Network and Service Management (Early Access). [en línea]. 2023, pp. 1-16. DOI: 10.1109/TNSM.2023.3340146. 10.1109/TNSM.2023.3340146 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/41900 |
publishDate | 2023 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | García González Gastón, Universidad de la República (Uruguay). Facultad de Ingeniería.Martínez Tagliafico Sergio, Universidad de la República (Uruguay). Facultad de Ingeniería.Fernández Alicia, Universidad de la República (Uruguay). Facultad de Ingeniería.Gómez Gabriel, Universidad de la República (Uruguay). Facultad de Ingeniería.Acuña José, Telefónica Uruguay.Casas Pedro, Austrian Institute of Technology Vienna, Austria.2023-12-19T13:24:57Z2023-12-19T13:24:57Z2023García González, G., Martínez Tagliafico, S., Fernández, A. y otros. "One model to find them all deep learning for multivariate time-series anomaly detection in mobile network data". IEEE Transactions on Network and Service Management (Early Access). [en línea]. 2023, pp. 1-16. DOI: 10.1109/TNSM.2023.3340146.https://ieeexplore.ieee.org/document/10345720https://hdl.handle.net/20.500.12008/4190010.1109/TNSM.2023.3340146Transferencia tecnológica. Grupo de investigación Detección de anomalías en series de tiempo, Facultad de Ingeniería. Instituto de Ingeniería Eléctrica.Network monitoring data generally consists of hundreds of counters periodically collected in the form of time-series, resulting in a complex-to-analyze multivariate time-series (MTS) process. Traditional time-series anomaly detection methods target univariate time-series analysis, which makes the MTS analysis cumbersome and prohibitively complex. We present DC-VAE (Dilated Convolutional -Variational Auto Encoder), a novel approach to anomaly detection in MTS data, leveraging convolutional neural networks (CNNs) and variational autoencoders (VAEs). DC-VAE detects anomalies in MTS data through a single model, exploiting temporal information without sacrificing computational and memory resources. In particular, instead of using recursive neural networks, large causal filters, or many layers, DC-VAE relies on Dilated Convolutions (DC) to capture long and short-term phenomena in the data. We evaluate DC-VAE on the detection of anomalies in the TELCO TELeCOmmunication-networks dataset, a large-scale, multi-dimensional network monitoring dataset collected at an operational mobile Internet Service Provider (ISP), where anomalous events were manually labeled by experts during seven months, at a five-minutes granularity. We benchmark DC-VAE against a broad set of traditional time-series anomaly detectors from the signal processing and machine learning domains. We also evaluate DC-VAE in open, publicly available datasets, comparing its performance against other multivariate anomaly detectors based on deep learning generative models. Results confirm the advantages of DC-VAE, both in terms of MTS data modeling, as well as for anomaly detection. For the sake of reproducibility and as an additional contribution, we make the TELCO dataset publicly available to the community and openly release the code implementing DC-VAE.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2023-12-15T00:23:16Z No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) GMFGAC23.pdf: 7566535 bytes, checksum: 4e79dbb885f64c658b3145e602ebd7c4 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2023-12-18T18:47:02Z (GMT) No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) GMFGAC23.pdf: 7566535 bytes, checksum: 4e79dbb885f64c658b3145e602ebd7c4 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-12-19T13:24:57Z (GMT). No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) GMFGAC23.pdf: 7566535 bytes, checksum: 4e79dbb885f64c658b3145e602ebd7c4 (MD5) Previous issue date: 2023Este trabajo ha sido parcialmente apoyado por la ANII-FMV, Proyecto con referencia FMV-1-2019-1-155850 Anomaly Detection with Continual and Streaming Machine Learning on Big Data Telecommunications Networks, por CSIC Proyecto I+D con referencia 22520220100371UD Anomaly Detection in Time Series : Generalization and Domain Change Adaptation, por Telefónica, y por el Austrian FFG ICT-of-the-Future project DynAISEC – Adaptive AI/ML for Dynamic Cybersecurity Systems – project ID 887504. Gastón García fue apoyado por la beca ANII POS-FMV-2020-1-1009239, así como por CSIC, en el marco del programa Movilidad e Intercambios Académicos 2022.16 p.application/pdfenengIEEE Transactions on Network and Service Management (Early Access), dec. 2023, pp. 1-16.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Anomaly detectionDetectorsData modelsAnalytical modelsPredictive modelsDeep learningConvolutionDeep LearningMultivariate Time-SeriesVariational Auto EncoderDilated ConvolutionTELCO Open DatasetOne model to find them all deep learning for multivariate time-series anomaly detection in mobile network dataArtículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaGarcía González, GastónMartínez Tagliafico, SergioFernández, AliciaGómez, GabrielAcuña, JoséCasas, PedroProcesamiento de SeñalesProcesamiento de SeñalesTelecomunicacionesTelecomunicacionesAnálisis de Redes, Tráfico y Estadísticas de ServiciosTratamiento de ImágenesAnálisis de Redes, Tráfico y Estadísticas de ServiciosTratamiento de ImágenesLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/41900/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/41900/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-822711http://localhost:8080/xmlui/bitstream/20.500.12008/41900/3/license_text3bf72aba7589cf23c5101bece94f4503MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-825790http://localhost:8080/xmlui/bitstream/20.500.12008/41900/4/license_rdf489f03e71d39068f329bdec8798bce58MD54ORIGINALGMFGAC23.pdfGMFGAC23.pdfapplication/pdf7566535http://localhost:8080/xmlui/bitstream/20.500.12008/41900/1/GMFGAC23.pdf4e79dbb885f64c658b3145e602ebd7c4MD5120.500.12008/419002024-07-24 17:25:48.7oai:colibri.udelar.edu.uy:20.500.12008/41900VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:43.215768COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | One model to find them all deep learning for multivariate time-series anomaly detection in mobile network data García González, Gastón Anomaly detection Detectors Data models Analytical models Predictive models Deep learning Convolution Deep Learning Multivariate Time-Series Variational Auto Encoder Dilated Convolution TELCO Open Dataset |
status_str | publishedVersion |
title | One model to find them all deep learning for multivariate time-series anomaly detection in mobile network data |
title_full | One model to find them all deep learning for multivariate time-series anomaly detection in mobile network data |
title_fullStr | One model to find them all deep learning for multivariate time-series anomaly detection in mobile network data |
title_full_unstemmed | One model to find them all deep learning for multivariate time-series anomaly detection in mobile network data |
title_short | One model to find them all deep learning for multivariate time-series anomaly detection in mobile network data |
title_sort | One model to find them all deep learning for multivariate time-series anomaly detection in mobile network data |
topic | Anomaly detection Detectors Data models Analytical models Predictive models Deep learning Convolution Deep Learning Multivariate Time-Series Variational Auto Encoder Dilated Convolution TELCO Open Dataset |
url | https://ieeexplore.ieee.org/document/10345720 https://hdl.handle.net/20.500.12008/41900 |