Performance improvement in a fingerprint classification system using anisotropic diffusion
Resumen:
In a previous work, [1], we evaluated a classification algorithm based on the Karu-Jain method [2] and compared the performance with a fully manual method used at the Dirección Nacional de Identificación Civil (DNIC). In this paper, we analyze the high performance improvement achieved using anisotropic diffusion instead of pure averaging for the directions smoothing. We also define a quality measure that shows high correlation with the experts’ criteria. The results are evaluated over 2800 images extracted from a 4 million fingerprint card archive maintained by DNIC.
2004 | |
PROCESAMIENTO de SEÑALES | |
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/21149 | |
Acceso abierto | |
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND) |
Resultados similares
-
Performance evaluation of an automatic fingerprint classification algorithm adapted to a Vucetich based classification system
Autor(es):: Bartesaghi, Alberto
Fecha de publicación:: (2001) -
Separation and classification of harmonic sounds for singing voice detection
Autor(es):: Rocamora, Martín
Fecha de publicación:: (2012) -
Constrained anisotropic diffusion and some applications
Autor(es):: Facciolo, Gabriele
Fecha de publicación:: (2006) -
Tools for detection and classification of piano drum patterns from candombe recordings
Autor(es):: Rocamora, Martín
Fecha de publicación:: (2014) -
Recognizing infants and toddlers over an on-production fingerprint database
Autor(es):: Camacho, Vanina
Fecha de publicación:: (2017)