Deep learning in confocal fluorescence microscopy for synthetic image generation and processing pipeline

Silvera, Diego - Millán, María José - Merlo, Emiliano - Lecumberry, Federico - Gómez, Alvaro - Cassina, Patricia - Winiarski, Erik

Resumen:

Machine Learning has had a significant impact on microscopy, enabling faster and more accurate analysis of biological imaging data. In particular, Generative Adversarial Networks (GANs) and U-Net have emerged as powerful tools in this field. GANs (I. Goodfellow et al. 2020) are a type of deep learning model that consists of two neural networks, a generator and a discriminator. The generator creates synthetic images while the discriminator attempts to differentiate between the synthetic images and real images. Through this adversarial process, the generator improves its ability to generate realistic images, while the discriminator improves its ability to differentiate between real and synthetic images. In microscopy, GANs can be used to generate synthetic microscopy images or to fill in missing or degraded image data as we show in this work. U-Net (O. Ronneberger et al. 2017) is a type of convolutional neural network that is specifically designed for image segmentation tasks. The architecture of U-Net consists of an encoder and a decoder, with skip connections between corresponding layers in the encoder and decoder. In microscopy, U-Net has been used to segment objects of interest in microscopy images, such as cells or subcellular structures, enabling more accurate analysis of the images. Overall, the integration of machine learning techniques, particularly GANs and U-Net, into microscopy has enabled researchers to analyze imaging data more efficiently and effectively, leading to new insights and advances in the field of biology(K. Dunn 2019, F.Long 2020). In this work, a GAN architecture is trained to generate confocal fluorescence microscopy synthetic images from blood monocyte stacks from control individuals and patients, where nuclei and mitochondria were marked with different fluorescent probes. These images are then processed by an own implemented pipeline consisting of deconvolution, segmentation and feature extraction for mitochondria classification In the deconvolution stage, the methods implemented in the ImageJ plugin "DeconvolutionLab2" (D. Sage et al. 2017) are used, where their performance is analyzed based on the parameters used and their characteristics, such as whether they are regularized algorithms or if they are iterative or non-iterative. For segmentation, different approaches are evaluated, starting with traditional histogram-based thresholding methods (Otsu, Huang, Li, among others), non-supervised clustering methods such as K-Means (Lloyd 1957; MacQueen 1967), and Deep Learning methods such as the U-Net neural network. In feature extraction, morphological and connectivity features are obtained. The morphological characteristics obtained are the usual ones (volume, area, sphericity, among others). The connectivity characteristics are found from skeletonization, pruning and graph modeling (M. Zanin et al 2020). The parameters found are the number of nodes, the density of links and the efficiency, among others. Finally, for the mitochondrial classification, classical approaches such as Decision Tree, Logistic Regression and Support Vector Machine (SVM) were used. The work was done in the Python programming language. We are currently working on making this framework publicly available. The final result of the work is an end-to-end pipeline with different processing options in the deconvolution and segmentation stages usable for different microscopy data, a synthetic data generator that achieves performance when it comes to simulating the effect of fluorescence in binary masks, and an application of both products for the mitochondrial classification with an accuracy result greater than 70%. It is concluded that neural networks have a fundamental role in the processing of medical and biological images, and can be used for data augmentation, segmentation and classification.


Detalles Bibliográficos
2023
Confocal microscopy
Data generation
Deconvolution
Segmentation
Morphological characteristics and classification
Inglés
Universidad de la República
COLIBRI
https://www.mmc-series.org.uk/abstract/1068-deep-learning-in-confocal-fluorescence-microscopy-for-synthetic-image-generation-and-processing-pipeline.html
https://hdl.handle.net/20.500.12008/40840
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522936520704000
author Silvera, Diego
author2 Millán, María José
Merlo, Emiliano
Lecumberry, Federico
Gómez, Alvaro
Cassina, Patricia
Winiarski, Erik
author2_role author
author
author
author
author
author
author_facet Silvera, Diego
Millán, María José
Merlo, Emiliano
Lecumberry, Federico
Gómez, Alvaro
Cassina, Patricia
Winiarski, Erik
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
1274339f512f00ecc522a4c5febd859e
489f03e71d39068f329bdec8798bce58
cc098832ec564f00bd025c459dfe5b4d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/40840/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/40840/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/40840/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/40840/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/40840/1/SMMLGCW23.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Silvera Diego, Universidad de la República (Uruguay). Facultad de Ingeniería.
Millán María José, Universidad de la República (Uruguay). Facultad de Ingeniería.
Merlo Emiliano, Universidad de la República (Uruguay). Facultad de Ingeniería.
Lecumberry Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.
Gómez Alvaro, Universidad de la República (Uruguay). Facultad de Ingeniería.
Cassina Patricia, Universidad de la República (Uruguay). Facultad de Medicina.
Winiarski Erik, Universidad de la República (Uruguay). Facultad de Medicina.
dc.creator.none.fl_str_mv Silvera, Diego
Millán, María José
Merlo, Emiliano
Lecumberry, Federico
Gómez, Alvaro
Cassina, Patricia
Winiarski, Erik
dc.date.accessioned.none.fl_str_mv 2023-10-26T19:07:35Z
dc.date.available.none.fl_str_mv 2023-10-26T19:07:35Z
dc.date.issued.none.fl_str_mv 2023
dc.description.abstract.none.fl_txt_mv Machine Learning has had a significant impact on microscopy, enabling faster and more accurate analysis of biological imaging data. In particular, Generative Adversarial Networks (GANs) and U-Net have emerged as powerful tools in this field. GANs (I. Goodfellow et al. 2020) are a type of deep learning model that consists of two neural networks, a generator and a discriminator. The generator creates synthetic images while the discriminator attempts to differentiate between the synthetic images and real images. Through this adversarial process, the generator improves its ability to generate realistic images, while the discriminator improves its ability to differentiate between real and synthetic images. In microscopy, GANs can be used to generate synthetic microscopy images or to fill in missing or degraded image data as we show in this work. U-Net (O. Ronneberger et al. 2017) is a type of convolutional neural network that is specifically designed for image segmentation tasks. The architecture of U-Net consists of an encoder and a decoder, with skip connections between corresponding layers in the encoder and decoder. In microscopy, U-Net has been used to segment objects of interest in microscopy images, such as cells or subcellular structures, enabling more accurate analysis of the images. Overall, the integration of machine learning techniques, particularly GANs and U-Net, into microscopy has enabled researchers to analyze imaging data more efficiently and effectively, leading to new insights and advances in the field of biology(K. Dunn 2019, F.Long 2020). In this work, a GAN architecture is trained to generate confocal fluorescence microscopy synthetic images from blood monocyte stacks from control individuals and patients, where nuclei and mitochondria were marked with different fluorescent probes. These images are then processed by an own implemented pipeline consisting of deconvolution, segmentation and feature extraction for mitochondria classification In the deconvolution stage, the methods implemented in the ImageJ plugin "DeconvolutionLab2" (D. Sage et al. 2017) are used, where their performance is analyzed based on the parameters used and their characteristics, such as whether they are regularized algorithms or if they are iterative or non-iterative. For segmentation, different approaches are evaluated, starting with traditional histogram-based thresholding methods (Otsu, Huang, Li, among others), non-supervised clustering methods such as K-Means (Lloyd 1957; MacQueen 1967), and Deep Learning methods such as the U-Net neural network. In feature extraction, morphological and connectivity features are obtained. The morphological characteristics obtained are the usual ones (volume, area, sphericity, among others). The connectivity characteristics are found from skeletonization, pruning and graph modeling (M. Zanin et al 2020). The parameters found are the number of nodes, the density of links and the efficiency, among others. Finally, for the mitochondrial classification, classical approaches such as Decision Tree, Logistic Regression and Support Vector Machine (SVM) were used. The work was done in the Python programming language. We are currently working on making this framework publicly available. The final result of the work is an end-to-end pipeline with different processing options in the deconvolution and segmentation stages usable for different microscopy data, a synthetic data generator that achieves performance when it comes to simulating the effect of fluorescence in binary masks, and an application of both products for the mitochondrial classification with an accuracy result greater than 70%. It is concluded that neural networks have a fundamental role in the processing of medical and biological images, and can be used for data augmentation, segmentation and classification.
dc.format.extent.es.fl_str_mv 15 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Silvera, D., Millán, M., Merlo, E. y otros. Deep learning in confocal fluorescence microscopy for synthetic image generation and processing pipeline. [en línea]. Póster, 2023.
dc.identifier.uri.none.fl_str_mv https://www.mmc-series.org.uk/abstract/1068-deep-learning-in-confocal-fluorescence-microscopy-for-synthetic-image-generation-and-processing-pipeline.html
https://hdl.handle.net/20.500.12008/40840
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Royal Microscopical Society
dc.relation.ispartof.es.fl_str_mv Microscience Microscopy Congress 2023 incorporating EMAG 2023, Manchester, United Kingdom, 4-6 jul. 2023, pp. 1-15.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Confocal microscopy
Data generation
Deconvolution
Segmentation
Morphological characteristics and classification
dc.title.none.fl_str_mv Deep learning in confocal fluorescence microscopy for synthetic image generation and processing pipeline
dc.type.es.fl_str_mv Póster
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Machine Learning has had a significant impact on microscopy, enabling faster and more accurate analysis of biological imaging data. In particular, Generative Adversarial Networks (GANs) and U-Net have emerged as powerful tools in this field. GANs (I. Goodfellow et al. 2020) are a type of deep learning model that consists of two neural networks, a generator and a discriminator. The generator creates synthetic images while the discriminator attempts to differentiate between the synthetic images and real images. Through this adversarial process, the generator improves its ability to generate realistic images, while the discriminator improves its ability to differentiate between real and synthetic images. In microscopy, GANs can be used to generate synthetic microscopy images or to fill in missing or degraded image data as we show in this work. U-Net (O. Ronneberger et al. 2017) is a type of convolutional neural network that is specifically designed for image segmentation tasks. The architecture of U-Net consists of an encoder and a decoder, with skip connections between corresponding layers in the encoder and decoder. In microscopy, U-Net has been used to segment objects of interest in microscopy images, such as cells or subcellular structures, enabling more accurate analysis of the images. Overall, the integration of machine learning techniques, particularly GANs and U-Net, into microscopy has enabled researchers to analyze imaging data more efficiently and effectively, leading to new insights and advances in the field of biology(K. Dunn 2019, F.Long 2020). In this work, a GAN architecture is trained to generate confocal fluorescence microscopy synthetic images from blood monocyte stacks from control individuals and patients, where nuclei and mitochondria were marked with different fluorescent probes. These images are then processed by an own implemented pipeline consisting of deconvolution, segmentation and feature extraction for mitochondria classification In the deconvolution stage, the methods implemented in the ImageJ plugin "DeconvolutionLab2" (D. Sage et al. 2017) are used, where their performance is analyzed based on the parameters used and their characteristics, such as whether they are regularized algorithms or if they are iterative or non-iterative. For segmentation, different approaches are evaluated, starting with traditional histogram-based thresholding methods (Otsu, Huang, Li, among others), non-supervised clustering methods such as K-Means (Lloyd 1957; MacQueen 1967), and Deep Learning methods such as the U-Net neural network. In feature extraction, morphological and connectivity features are obtained. The morphological characteristics obtained are the usual ones (volume, area, sphericity, among others). The connectivity characteristics are found from skeletonization, pruning and graph modeling (M. Zanin et al 2020). The parameters found are the number of nodes, the density of links and the efficiency, among others. Finally, for the mitochondrial classification, classical approaches such as Decision Tree, Logistic Regression and Support Vector Machine (SVM) were used. The work was done in the Python programming language. We are currently working on making this framework publicly available. The final result of the work is an end-to-end pipeline with different processing options in the deconvolution and segmentation stages usable for different microscopy data, a synthetic data generator that achieves performance when it comes to simulating the effect of fluorescence in binary masks, and an application of both products for the mitochondrial classification with an accuracy result greater than 70%. It is concluded that neural networks have a fundamental role in the processing of medical and biological images, and can be used for data augmentation, segmentation and classification.
eu_rights_str_mv openAccess
format conferenceObject
id COLIBRI_01ed2c0cc4d7ed26d66123850b518f52
identifier_str_mv Silvera, D., Millán, M., Merlo, E. y otros. Deep learning in confocal fluorescence microscopy for synthetic image generation and processing pipeline. [en línea]. Póster, 2023.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/40840
publishDate 2023
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Silvera Diego, Universidad de la República (Uruguay). Facultad de Ingeniería.Millán María José, Universidad de la República (Uruguay). Facultad de Ingeniería.Merlo Emiliano, Universidad de la República (Uruguay). Facultad de Ingeniería.Lecumberry Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.Gómez Alvaro, Universidad de la República (Uruguay). Facultad de Ingeniería.Cassina Patricia, Universidad de la República (Uruguay). Facultad de Medicina.Winiarski Erik, Universidad de la República (Uruguay). Facultad de Medicina.2023-10-26T19:07:35Z2023-10-26T19:07:35Z2023Silvera, D., Millán, M., Merlo, E. y otros. Deep learning in confocal fluorescence microscopy for synthetic image generation and processing pipeline. [en línea]. Póster, 2023.https://www.mmc-series.org.uk/abstract/1068-deep-learning-in-confocal-fluorescence-microscopy-for-synthetic-image-generation-and-processing-pipeline.htmlhttps://hdl.handle.net/20.500.12008/40840Machine Learning has had a significant impact on microscopy, enabling faster and more accurate analysis of biological imaging data. In particular, Generative Adversarial Networks (GANs) and U-Net have emerged as powerful tools in this field. GANs (I. Goodfellow et al. 2020) are a type of deep learning model that consists of two neural networks, a generator and a discriminator. The generator creates synthetic images while the discriminator attempts to differentiate between the synthetic images and real images. Through this adversarial process, the generator improves its ability to generate realistic images, while the discriminator improves its ability to differentiate between real and synthetic images. In microscopy, GANs can be used to generate synthetic microscopy images or to fill in missing or degraded image data as we show in this work. U-Net (O. Ronneberger et al. 2017) is a type of convolutional neural network that is specifically designed for image segmentation tasks. The architecture of U-Net consists of an encoder and a decoder, with skip connections between corresponding layers in the encoder and decoder. In microscopy, U-Net has been used to segment objects of interest in microscopy images, such as cells or subcellular structures, enabling more accurate analysis of the images. Overall, the integration of machine learning techniques, particularly GANs and U-Net, into microscopy has enabled researchers to analyze imaging data more efficiently and effectively, leading to new insights and advances in the field of biology(K. Dunn 2019, F.Long 2020). In this work, a GAN architecture is trained to generate confocal fluorescence microscopy synthetic images from blood monocyte stacks from control individuals and patients, where nuclei and mitochondria were marked with different fluorescent probes. These images are then processed by an own implemented pipeline consisting of deconvolution, segmentation and feature extraction for mitochondria classification In the deconvolution stage, the methods implemented in the ImageJ plugin "DeconvolutionLab2" (D. Sage et al. 2017) are used, where their performance is analyzed based on the parameters used and their characteristics, such as whether they are regularized algorithms or if they are iterative or non-iterative. For segmentation, different approaches are evaluated, starting with traditional histogram-based thresholding methods (Otsu, Huang, Li, among others), non-supervised clustering methods such as K-Means (Lloyd 1957; MacQueen 1967), and Deep Learning methods such as the U-Net neural network. In feature extraction, morphological and connectivity features are obtained. The morphological characteristics obtained are the usual ones (volume, area, sphericity, among others). The connectivity characteristics are found from skeletonization, pruning and graph modeling (M. Zanin et al 2020). The parameters found are the number of nodes, the density of links and the efficiency, among others. Finally, for the mitochondrial classification, classical approaches such as Decision Tree, Logistic Regression and Support Vector Machine (SVM) were used. The work was done in the Python programming language. We are currently working on making this framework publicly available. The final result of the work is an end-to-end pipeline with different processing options in the deconvolution and segmentation stages usable for different microscopy data, a synthetic data generator that achieves performance when it comes to simulating the effect of fluorescence in binary masks, and an application of both products for the mitochondrial classification with an accuracy result greater than 70%. It is concluded that neural networks have a fundamental role in the processing of medical and biological images, and can be used for data augmentation, segmentation and classification.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2023-10-25T00:27:24Z No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) SMMLGCW23.pdf: 112181 bytes, checksum: cc098832ec564f00bd025c459dfe5b4d (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2023-10-26T18:50:35Z (GMT) No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) SMMLGCW23.pdf: 112181 bytes, checksum: cc098832ec564f00bd025c459dfe5b4d (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-10-26T19:07:35Z (GMT). No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) SMMLGCW23.pdf: 112181 bytes, checksum: cc098832ec564f00bd025c459dfe5b4d (MD5) Previous issue date: 202315 p.application/pdfenengRoyal Microscopical SocietyMicroscience Microscopy Congress 2023 incorporating EMAG 2023, Manchester, United Kingdom, 4-6 jul. 2023, pp. 1-15.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Confocal microscopyData generationDeconvolutionSegmentationMorphological characteristics and classificationDeep learning in confocal fluorescence microscopy for synthetic image generation and processing pipelinePósterinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaSilvera, DiegoMillán, María JoséMerlo, EmilianoLecumberry, FedericoGómez, AlvaroCassina, PatriciaWiniarski, ErikLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/40840/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/40840/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-814403http://localhost:8080/xmlui/bitstream/20.500.12008/40840/3/license_text1274339f512f00ecc522a4c5febd859eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-825790http://localhost:8080/xmlui/bitstream/20.500.12008/40840/4/license_rdf489f03e71d39068f329bdec8798bce58MD54ORIGINALSMMLGCW23.pdfSMMLGCW23.pdfapplication/pdf112181http://localhost:8080/xmlui/bitstream/20.500.12008/40840/1/SMMLGCW23.pdfcc098832ec564f00bd025c459dfe5b4dMD5120.500.12008/408402023-10-26 16:07:35.233oai:colibri.udelar.edu.uy:20.500.12008/40840VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:33.852305COLIBRI - Universidad de la Repúblicafalse
spellingShingle Deep learning in confocal fluorescence microscopy for synthetic image generation and processing pipeline
Silvera, Diego
Confocal microscopy
Data generation
Deconvolution
Segmentation
Morphological characteristics and classification
status_str publishedVersion
title Deep learning in confocal fluorescence microscopy for synthetic image generation and processing pipeline
title_full Deep learning in confocal fluorescence microscopy for synthetic image generation and processing pipeline
title_fullStr Deep learning in confocal fluorescence microscopy for synthetic image generation and processing pipeline
title_full_unstemmed Deep learning in confocal fluorescence microscopy for synthetic image generation and processing pipeline
title_short Deep learning in confocal fluorescence microscopy for synthetic image generation and processing pipeline
title_sort Deep learning in confocal fluorescence microscopy for synthetic image generation and processing pipeline
topic Confocal microscopy
Data generation
Deconvolution
Segmentation
Morphological characteristics and classification
url https://www.mmc-series.org.uk/abstract/1068-deep-learning-in-confocal-fluorescence-microscopy-for-synthetic-image-generation-and-processing-pipeline.html
https://hdl.handle.net/20.500.12008/40840