On the application of graph neural networks for indoor positioning systems.

Lezama, Facundo - Larroca, Federico - Capdehourat, Germán

Resumen:

Due to the inability of GPS (or other GNSS methods) to provide satisfactory precision for the indoor location scenario, indoor positioning systems resort to other signals already available on site, typically Wi-Fi given its ubiquity. However, instead of relying on an error-prone propagation model as in ranging methods, the popular fingerprinting positioning technique considers a more direct data-driven approach to the problem. First of all, the area of interest is divided into zones, and then a machine learning algorithm is trained to map, for instance, power measurements (RSSI) from APs to the localization zone, thus effectively turning the problem into a classification one. However, although the positioning problem is a geometrical one, virtually all methods proposed in the literature disregard the underlying structure of the data, using generic machine learning algorithms. In this chapter we consider instead a graph-based learning method, Graph Neural Networks, a paradigm that has emerged in the last few years and that constitutes the state of the art for several problems. After presenting the pertinent theoretical background, we discuss two possibilities to construct the underlying graph for the positioning problem. We then perform a thorough evaluation of both possibilities and compare it with some of the most popular machine learning alternatives. The main conclusion is that these graph-based methods obtain systematically better results, particularly with regard to practical aspects (e.g., gracefully tolerating faulty APs), which makes them a serious candidate to consider when deploying positioning systems.


Detalles Bibliográficos
2023
Graph classification
Graph signal interpolation
Localization
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/37987
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522932932476928
author Lezama, Facundo
author2 Larroca, Federico
Capdehourat, Germán
author2_role author
author
author_facet Lezama, Facundo
Larroca, Federico
Capdehourat, Germán
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
e8c30e04e865334cac2bfcba70aad8cb
1996b8461bc290aef6a27d78c67b6b52
c99fe5e37544084f0b189f57eaa671df
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/37987/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/37987/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/37987/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/37987/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/37987/1/LLC23.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Lezama Facundo, Universidad de la República (Uruguay). Facultad de Ingeniería.
Larroca Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.
Capdehourat Germán, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.none.fl_str_mv Lezama, Facundo
Larroca, Federico
Capdehourat, Germán
dc.date.accessioned.none.fl_str_mv 2023-07-05T21:02:24Z
dc.date.available.none.fl_str_mv 2023-07-05T21:02:24Z
dc.date.issued.none.fl_str_mv 2023
dc.description.abstract.none.fl_txt_mv Due to the inability of GPS (or other GNSS methods) to provide satisfactory precision for the indoor location scenario, indoor positioning systems resort to other signals already available on site, typically Wi-Fi given its ubiquity. However, instead of relying on an error-prone propagation model as in ranging methods, the popular fingerprinting positioning technique considers a more direct data-driven approach to the problem. First of all, the area of interest is divided into zones, and then a machine learning algorithm is trained to map, for instance, power measurements (RSSI) from APs to the localization zone, thus effectively turning the problem into a classification one. However, although the positioning problem is a geometrical one, virtually all methods proposed in the literature disregard the underlying structure of the data, using generic machine learning algorithms. In this chapter we consider instead a graph-based learning method, Graph Neural Networks, a paradigm that has emerged in the last few years and that constitutes the state of the art for several problems. After presenting the pertinent theoretical background, we discuss two possibilities to construct the underlying graph for the positioning problem. We then perform a thorough evaluation of both possibilities and compare it with some of the most popular machine learning alternatives. The main conclusion is that these graph-based methods obtain systematically better results, particularly with regard to practical aspects (e.g., gracefully tolerating faulty APs), which makes them a serious candidate to consider when deploying positioning systems.
dc.format.extent.es.fl_str_mv 20 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Lezama, F., Larroca, F. y Capdehourat, G. On the application of graph neural networks for indoor positioning systems [Preprint]. Publicado en: Machine Learning for Indoor Localization and Navigation. Springer, Cham, 2023. DOI: 10.1007/978-3-031-26712-3_10
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/37987
dc.language.iso.none.fl_str_mv en
eng
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Graph classification
Graph signal interpolation
Localization
dc.title.none.fl_str_mv On the application of graph neural networks for indoor positioning systems.
dc.type.es.fl_str_mv Capítulo de libro
dc.type.none.fl_str_mv info:eu-repo/semantics/bookPart
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Due to the inability of GPS (or other GNSS methods) to provide satisfactory precision for the indoor location scenario, indoor positioning systems resort to other signals already available on site, typically Wi-Fi given its ubiquity. However, instead of relying on an error-prone propagation model as in ranging methods, the popular fingerprinting positioning technique considers a more direct data-driven approach to the problem. First of all, the area of interest is divided into zones, and then a machine learning algorithm is trained to map, for instance, power measurements (RSSI) from APs to the localization zone, thus effectively turning the problem into a classification one. However, although the positioning problem is a geometrical one, virtually all methods proposed in the literature disregard the underlying structure of the data, using generic machine learning algorithms. In this chapter we consider instead a graph-based learning method, Graph Neural Networks, a paradigm that has emerged in the last few years and that constitutes the state of the art for several problems. After presenting the pertinent theoretical background, we discuss two possibilities to construct the underlying graph for the positioning problem. We then perform a thorough evaluation of both possibilities and compare it with some of the most popular machine learning alternatives. The main conclusion is that these graph-based methods obtain systematically better results, particularly with regard to practical aspects (e.g., gracefully tolerating faulty APs), which makes them a serious candidate to consider when deploying positioning systems.
eu_rights_str_mv openAccess
format bookPart
id COLIBRI_00213ea796d5fff7d563c280cfe42bf2
identifier_str_mv Lezama, F., Larroca, F. y Capdehourat, G. On the application of graph neural networks for indoor positioning systems [Preprint]. Publicado en: Machine Learning for Indoor Localization and Navigation. Springer, Cham, 2023. DOI: 10.1007/978-3-031-26712-3_10
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/37987
publishDate 2023
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Lezama Facundo, Universidad de la República (Uruguay). Facultad de Ingeniería.Larroca Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.Capdehourat Germán, Universidad de la República (Uruguay). Facultad de Ingeniería.2023-07-05T21:02:24Z2023-07-05T21:02:24Z2023Lezama, F., Larroca, F. y Capdehourat, G. On the application of graph neural networks for indoor positioning systems [Preprint]. Publicado en: Machine Learning for Indoor Localization and Navigation. Springer, Cham, 2023. DOI: 10.1007/978-3-031-26712-3_10https://hdl.handle.net/20.500.12008/37987Due to the inability of GPS (or other GNSS methods) to provide satisfactory precision for the indoor location scenario, indoor positioning systems resort to other signals already available on site, typically Wi-Fi given its ubiquity. However, instead of relying on an error-prone propagation model as in ranging methods, the popular fingerprinting positioning technique considers a more direct data-driven approach to the problem. First of all, the area of interest is divided into zones, and then a machine learning algorithm is trained to map, for instance, power measurements (RSSI) from APs to the localization zone, thus effectively turning the problem into a classification one. However, although the positioning problem is a geometrical one, virtually all methods proposed in the literature disregard the underlying structure of the data, using generic machine learning algorithms. In this chapter we consider instead a graph-based learning method, Graph Neural Networks, a paradigm that has emerged in the last few years and that constitutes the state of the art for several problems. After presenting the pertinent theoretical background, we discuss two possibilities to construct the underlying graph for the positioning problem. We then perform a thorough evaluation of both possibilities and compare it with some of the most popular machine learning alternatives. The main conclusion is that these graph-based methods obtain systematically better results, particularly with regard to practical aspects (e.g., gracefully tolerating faulty APs), which makes them a serious candidate to consider when deploying positioning systems.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2023-07-05T01:01:24Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) LLC23.pdf: 405451 bytes, checksum: c99fe5e37544084f0b189f57eaa671df (MD5)Approved for entry into archive by Berón Cecilia (cberon@fing.edu.uy) on 2023-07-05T18:57:05Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) LLC23.pdf: 405451 bytes, checksum: c99fe5e37544084f0b189f57eaa671df (MD5)Made available in DSpace by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2023-07-05T21:02:24Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) LLC23.pdf: 405451 bytes, checksum: c99fe5e37544084f0b189f57eaa671df (MD5) Previous issue date: 202320 p.application/pdfenengLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Graph classificationGraph signal interpolationLocalizationOn the application of graph neural networks for indoor positioning systems.Capítulo de libroinfo:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaLezama, FacundoLarroca, FedericoCapdehourat, GermánLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/37987/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/37987/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838782http://localhost:8080/xmlui/bitstream/20.500.12008/37987/3/license_texte8c30e04e865334cac2bfcba70aad8cbMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/37987/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALLLC23.pdfLLC23.pdfapplication/pdf405451http://localhost:8080/xmlui/bitstream/20.500.12008/37987/1/LLC23.pdfc99fe5e37544084f0b189f57eaa671dfMD5120.500.12008/379872023-07-05 18:02:24.311oai:colibri.udelar.edu.uy:20.500.12008/37987VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:21.224995COLIBRI - Universidad de la Repúblicafalse
spellingShingle On the application of graph neural networks for indoor positioning systems.
Lezama, Facundo
Graph classification
Graph signal interpolation
Localization
status_str publishedVersion
title On the application of graph neural networks for indoor positioning systems.
title_full On the application of graph neural networks for indoor positioning systems.
title_fullStr On the application of graph neural networks for indoor positioning systems.
title_full_unstemmed On the application of graph neural networks for indoor positioning systems.
title_short On the application of graph neural networks for indoor positioning systems.
title_sort On the application of graph neural networks for indoor positioning systems.
topic Graph classification
Graph signal interpolation
Localization
url https://hdl.handle.net/20.500.12008/37987