Estrechando lazos entre investigación y formación en Matemática Educativa. Experiencias conjuntas de docentes y futuros docentes. Volumen II

Buendía, Gabriela - Molfino Vigo, Verónica - Ochoviet, Cristina

Resumen:

En el encantador Reino del Revés que nos regaló María Elena Walsh, lo imposible deja de serlo para volverse un hecho natural; y aunque no estemos en ese Reino, algo similar ha ocurrido con este proyecto que iniciamos en el año 2014. Cuando emprendimos esta tarea de compilar trabajos que, escritos por docentes y sus estudiantes, estuvieran relacionados con resultados de investigación en Matemática Educativa, teníamos confianza en lograr un primer volumen. Pero nos resultaba difícil imaginar que pudiéramos darle continuidad en tanto el desafío es inmenso en diversos sentidos. Varios componentes inciden en la concreción del camino a transitar. Uno de ellos es la instauración en el aula de formación docente del hábito de analizar investigaciones en Matemática Educativa. Otro, la vinculación de los resultados de dichas investigaciones con la práctica docente de los estudiantes, tanto mediante el emprendimiento de micro diseños de investigación como mediante la reformulación crítica del discurso matemático escolar (que cristaliza en diseños para la enseñanza y en recursos didácticos novedosos). También se hace necesario desarrollar procesos de escritura de profesores y estudiantes en conjunto que finalmente posibiliten la divulgación de los trabajos a la comunidad de docentes de matemática, egresados y en formación. Este logro es fruto de un proceso que tiene una forma particular de pensar la formación docente, una concepción que se sostiene en dos líneas de trabajo fundamentales. Por un lado, el esfuerzo explícito que se viene realizando por estrechar lazos entre la investigación y la práctica, pues es en la formación docente, inicial y continua, donde ese vínculo fermenta y tiene un efecto expansivo. Y, por otro, la apertura entre docentes y estudiantes que ha posibilitado el trabajo colaborativo real que genera aprendizajes en múltiples sentidos y para todos los involucrados. Este volumen contiene siete trabajos; cinco de ellos escritos por profesores y estudiantes del Instituto de Profesores Artigas; uno es producto del trabajo conjunto de profesores y estudiantes del Profesorado Semipresencial y otro está escrito por docentes y estudiantes de posgrado del Diploma en Matemática (ANEP‐UdelaR). Dos de ellos son producto de la implementación de micro diseños de investigación. En Derivadas sucesivas: una secuencia para apreciar su potencial se reflexiona en torno a qué nos puede aportar para la enseñanza del Cálculo una secuencia que promueva el uso de las relaciones entre la función y sus derivadas; Más allá de la concavidad: un estudio sobre el valor numérico de la derivada segunda presenta un trabajo en el que se indagaron los conocimientos e impresiones que tienen los estudiantes de profesorado de matemática sobre las relaciones gráficas y numéricas en torno al valor numérico de la función derivada segunda. Otros dos trabajos consisten en propuestas de diseños para la enseñanza: en Periodicidad en el discurso matemático escolar uruguayo: una puesta a punto y una propuesta se realiza un análisis crítico sobre la enseñanza del concepto de periodicidad y, a la luz de elementos provenientes de trabajos de investigación sobre este tema, se presenta una propuesta de abordaje de la periodicidad en libros de texto; en Diseño de tareas de aprendizaje con el Modelo 3 UV se analiza la potencialidad de actividades orientadas por un modelo proveniente de la investigación en Matemática Educativa para la enseñanza del álgebra. Por último, presentamos tres trabajos que proponen recursos didácticos novedosos. En Una aproximación a la evaluación: el diseño de tareas se proponen nuevos sentidos para una tarea que el profesor realiza en forma habitual; Los cuentos entran a la clase de matemática trata sobre la potencialidad del uso de cuentos e historias en la clase de matemática, se expone la metodología para desarrollar este recurso y se ejemplifica; finalmente, en Tareas enfocadas a similitudes y diferencias como motor para el aprendizaje de la matemática: nuevas categorías se presentan y ejemplifican tres nuevas categorías en este tipo de tareas: tareas de particularizar y generalizar, tareas de proponer un objeto matemático y tareas de formular preguntas para identificar un objeto matemático. Los invitamos, pues, a disfrutar de este libro que evidencia que es posible imaginar y concretar proyectos de esta naturaleza (sin estar en el Reino del Revés). Para que el proyecto cristalice solo hace falta que se divulgue y utilice con la apertura que caracteriza el proceso de producción intrínseca a los trabajos presentados. Ahora sí, los saludamos y nos despedimos con el compromiso de volver a encontrarnos. Gabriela Buendía, Verónica Molfino, Cristina Ochoviet


Detalles Bibliográficos
2015
Formación de docentes
Enseñanza de las matemáticas
aprendizaje
Investigación educativa
Español
ANEP. Consejo de Formación en Educación
RIdAA-CFE
http://repositorio.cfe.edu.uy/handle/123456789/371
Acceso abierto
cc by-nc-nd 4.0
Resumen:
Sumario:En el encantador Reino del Revés que nos regaló María Elena Walsh, lo imposible deja de serlo para volverse un hecho natural; y aunque no estemos en ese Reino, algo similar ha ocurrido con este proyecto que iniciamos en el año 2014. Cuando emprendimos esta tarea de compilar trabajos que, escritos por docentes y sus estudiantes, estuvieran relacionados con resultados de investigación en Matemática Educativa, teníamos confianza en lograr un primer volumen. Pero nos resultaba difícil imaginar que pudiéramos darle continuidad en tanto el desafío es inmenso en diversos sentidos. Varios componentes inciden en la concreción del camino a transitar. Uno de ellos es la instauración en el aula de formación docente del hábito de analizar investigaciones en Matemática Educativa. Otro, la vinculación de los resultados de dichas investigaciones con la práctica docente de los estudiantes, tanto mediante el emprendimiento de micro diseños de investigación como mediante la reformulación crítica del discurso matemático escolar (que cristaliza en diseños para la enseñanza y en recursos didácticos novedosos). También se hace necesario desarrollar procesos de escritura de profesores y estudiantes en conjunto que finalmente posibiliten la divulgación de los trabajos a la comunidad de docentes de matemática, egresados y en formación. Este logro es fruto de un proceso que tiene una forma particular de pensar la formación docente, una concepción que se sostiene en dos líneas de trabajo fundamentales. Por un lado, el esfuerzo explícito que se viene realizando por estrechar lazos entre la investigación y la práctica, pues es en la formación docente, inicial y continua, donde ese vínculo fermenta y tiene un efecto expansivo. Y, por otro, la apertura entre docentes y estudiantes que ha posibilitado el trabajo colaborativo real que genera aprendizajes en múltiples sentidos y para todos los involucrados. Este volumen contiene siete trabajos; cinco de ellos escritos por profesores y estudiantes del Instituto de Profesores Artigas; uno es producto del trabajo conjunto de profesores y estudiantes del Profesorado Semipresencial y otro está escrito por docentes y estudiantes de posgrado del Diploma en Matemática (ANEP‐UdelaR). Dos de ellos son producto de la implementación de micro diseños de investigación. En Derivadas sucesivas: una secuencia para apreciar su potencial se reflexiona en torno a qué nos puede aportar para la enseñanza del Cálculo una secuencia que promueva el uso de las relaciones entre la función y sus derivadas; Más allá de la concavidad: un estudio sobre el valor numérico de la derivada segunda presenta un trabajo en el que se indagaron los conocimientos e impresiones que tienen los estudiantes de profesorado de matemática sobre las relaciones gráficas y numéricas en torno al valor numérico de la función derivada segunda. Otros dos trabajos consisten en propuestas de diseños para la enseñanza: en Periodicidad en el discurso matemático escolar uruguayo: una puesta a punto y una propuesta se realiza un análisis crítico sobre la enseñanza del concepto de periodicidad y, a la luz de elementos provenientes de trabajos de investigación sobre este tema, se presenta una propuesta de abordaje de la periodicidad en libros de texto; en Diseño de tareas de aprendizaje con el Modelo 3 UV se analiza la potencialidad de actividades orientadas por un modelo proveniente de la investigación en Matemática Educativa para la enseñanza del álgebra. Por último, presentamos tres trabajos que proponen recursos didácticos novedosos. En Una aproximación a la evaluación: el diseño de tareas se proponen nuevos sentidos para una tarea que el profesor realiza en forma habitual; Los cuentos entran a la clase de matemática trata sobre la potencialidad del uso de cuentos e historias en la clase de matemática, se expone la metodología para desarrollar este recurso y se ejemplifica; finalmente, en Tareas enfocadas a similitudes y diferencias como motor para el aprendizaje de la matemática: nuevas categorías se presentan y ejemplifican tres nuevas categorías en este tipo de tareas: tareas de particularizar y generalizar, tareas de proponer un objeto matemático y tareas de formular preguntas para identificar un objeto matemático. Los invitamos, pues, a disfrutar de este libro que evidencia que es posible imaginar y concretar proyectos de esta naturaleza (sin estar en el Reino del Revés). Para que el proyecto cristalice solo hace falta que se divulgue y utilice con la apertura que caracteriza el proceso de producción intrínseca a los trabajos presentados. Ahora sí, los saludamos y nos despedimos con el compromiso de volver a encontrarnos. Gabriela Buendía, Verónica Molfino, Cristina Ochoviet