Estrechando lazos entre investigación y formación en Matemática Educativa Experiencias conjuntas de docentes y futuros docentes
Resumen:
Vincent van Gogh pintó Almendro en flor en homenaje al nacimiento de su sobrino en el año 1890. Las ramas florecidas de este árbol son símbolo de la llegada de la primavera, anuncian lo nuevo, lo que renace. En varias leyendas aparecen hombres o mujeres que se metamorfosean en un almendro y es la presencia de las flores en sus ramas la que representa la vida humana que alberga en su interior. Elegimos esta metáfora para representar lo desarrollado en este libro porque, además de ser una idea que surge en primavera, sentimos que a través de él estamos dando lugar a muchas cosas nuevas. En primer lugar, este libro reúne producciones que han sido elaboradas por profesores y estudiantes de la especialidad Matemática del Instituto de Profesores Artigas. Esta particularidad refleja un trabajar juntos, la posibilidad de dar lugar a lo nuevo desde el trabajo de clase de distintas asignaturas y sitúa tanto a docentes como a estudiantes en el plano de la creación compartida. En segundo lugar, el libro da cuenta de que es posible pensar la enseñanza de la matemática mediada por los aportes de la investigación. La relación entre la práctica y la investigación continúa siendo un problema a resolver desde la comunidad de educadores matemáticos: ¿cómo lograr que el conocimiento creado desde la investigación enriquezca las prácticas de aula? Y asimismo, ¿cómo el conocimiento creado en la práctica puede retroalimentar lo producido en la investigación? Intentamos entonces aportar a esta relación tomando diversos resultados como referencia para, a partir de ellos, ensayar actividades de enseñanza y en algunos casos, experimentarlas en aula para luego reflexionar sobre lo sucedido y aprender de ese proceso. En otros, el trabajo teórico se realizó desde otro punto de vista: ¿cómo puede ayudarnos una perspectiva teórica para analizar prácticas de aula? Y también: ¿cómo puede modelarse teóricamente una práctica desde un cierto marco? En tercer lugar, queremos destacar una idea que atraviesa todos los artículos, que es la conversación entre los integrantes de la comunidad, en este caso docentes y estudiantes, la que da lugar a lo producido. Esta producción puede ser fruto de una idea para resolver un problema, una conjetura a explorar, una manera de mirar una práctica, la emergencia de perspectivas de análisis de actividades para la enseñanza, entre otras posibilidades. Lo que deseamos jerarquizar entonces es una forma de crear que se asienta en el diálogo y, en consecuencia, en la comunicación bidireccional. Esta forma de hacer es la que también tratamos de promover entre nuestros estudiantes, futuros profesores, para sus clases en la enseñanza media. Así, presentamos tres tipos de artículos que responden a diferentes necesidades suscitadas en el seno de la reflexión que docentes y futuros docentes realizamos sobre las prácticas de enseñanza. En primer lugar, incluimos dos artículos que muestran cómo, partiendo de un marco teórico particular dentro de la Matemática Educativa, se pueden elaborar actividades y analizar las producciones de estudiantes de profesorado al resolverlas (Infinito, límite de lo ilimitado y Una experiencia de actividad geométrica en la formación inicial de profesores de matemática). En segundo lugar, ubicamos tres artículos que responden a una práctica que hace a la labor docente, que es el diseño de actividades, enmarcadas, en este caso, en marcos teóricos específicos de la investigación en Matemática Educativa (Diseño de actividades con uso de fotografía, Cuatro momentos en la evolución de la Matemática Educativa ejemplificados a través del concepto de periodicidad y El sentido de los símbolos y las actividades de enseñanza). Por último, presentamos un artículo que brinda herramientas teóricas específicas para el análisis del discurso de aula, pretendiendo aportar a la reflexión sobre ¿Por qué damos un determinado tema de la manera en que lo hacemos? (¿Por qué hacemos lo que hacemos en el aula? Análisis crítico del discurso de un profesor en torno al tema Trigonometría). Esperamos que este trabajo sea el primero de otros que seguramente vendrán para continuar aportando en este proceso de creación colectiva con el que queremos cristalizar, aunque sea parcialmente, nuestra forma de entender la enseñanza de la matemática. Al igual que lo que ocurre en un almendro, los trabajos que aquí presentamos reflejan, como las flores que surgen en primavera, un proceso vivido durante todo el año. A la vez, la metáfora nos permite considerar que es posible que el almendro se ramifique y continúe floreciendo en los años venideros. Gabriela Buendía, Verónica Molfino, Cristina Ochoviet
2014 | |
Formación de docentes Enseñanza de las matemáticas Investigación educativa |
|
Español | |
ANEP. Consejo de Formación en Educación | |
RIdAA-CFE | |
http://repositorio.cfe.edu.uy/handle/123456789/368 | |
Acceso abierto | |
cc by-nc-nd 4.0 |
_version_ | 1815416017739841536 |
---|---|
author | Buendía, Gabriela |
author2 | Molfino Vigo, Verónica Ochoviet, Cristina |
author2_role | author author |
author_facet | Buendía, Gabriela Molfino Vigo, Verónica Ochoviet, Cristina |
author_role | author |
bitstream.checksum.fl_str_mv | df766076a5772cb4184b94046e67735a 2abfb606b0dc30659cfa9aa1758b33e6 f750f7628c1f0a1014f5e37277635f33 3156c503a6c0784ef2be3ecf6e0f4fc2 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://repositorio.cfe.edu.uy/bitstream/123456789/368/1/license.txt http://repositorio.cfe.edu.uy/bitstream/123456789/368/2/Buendia%2cG.Estrechando.pdf http://repositorio.cfe.edu.uy/bitstream/123456789/368/3/Buendia%2cG.Estrechando.pdf.txt http://repositorio.cfe.edu.uy/bitstream/123456789/368/4/Buendia%2cG.Estrechando.pdf.jpg |
collection | RIdAA-CFE |
dc.creator.filiacion.ES.fl_str_mv | CFE CFE CFE |
dc.creator.none.fl_str_mv | Buendía, Gabriela Molfino Vigo, Verónica Ochoviet, Cristina |
dc.creator.role.ES.fl_str_mv | Comp. Comp. Comp. |
dc.date.accessioned.none.fl_str_mv | 2019-11-07T18:06:00Z |
dc.date.available.none.fl_str_mv | 2019-11-07T18:06:00Z |
dc.date.issued.none.fl_str_mv | 2014-11 |
dc.date.submitted.none.fl_str_mv | 2019-11-06 |
dc.description.abstract.none.fl_txt_mv | Vincent van Gogh pintó Almendro en flor en homenaje al nacimiento de su sobrino en el año 1890. Las ramas florecidas de este árbol son símbolo de la llegada de la primavera, anuncian lo nuevo, lo que renace. En varias leyendas aparecen hombres o mujeres que se metamorfosean en un almendro y es la presencia de las flores en sus ramas la que representa la vida humana que alberga en su interior. Elegimos esta metáfora para representar lo desarrollado en este libro porque, además de ser una idea que surge en primavera, sentimos que a través de él estamos dando lugar a muchas cosas nuevas. En primer lugar, este libro reúne producciones que han sido elaboradas por profesores y estudiantes de la especialidad Matemática del Instituto de Profesores Artigas. Esta particularidad refleja un trabajar juntos, la posibilidad de dar lugar a lo nuevo desde el trabajo de clase de distintas asignaturas y sitúa tanto a docentes como a estudiantes en el plano de la creación compartida. En segundo lugar, el libro da cuenta de que es posible pensar la enseñanza de la matemática mediada por los aportes de la investigación. La relación entre la práctica y la investigación continúa siendo un problema a resolver desde la comunidad de educadores matemáticos: ¿cómo lograr que el conocimiento creado desde la investigación enriquezca las prácticas de aula? Y asimismo, ¿cómo el conocimiento creado en la práctica puede retroalimentar lo producido en la investigación? Intentamos entonces aportar a esta relación tomando diversos resultados como referencia para, a partir de ellos, ensayar actividades de enseñanza y en algunos casos, experimentarlas en aula para luego reflexionar sobre lo sucedido y aprender de ese proceso. En otros, el trabajo teórico se realizó desde otro punto de vista: ¿cómo puede ayudarnos una perspectiva teórica para analizar prácticas de aula? Y también: ¿cómo puede modelarse teóricamente una práctica desde un cierto marco? En tercer lugar, queremos destacar una idea que atraviesa todos los artículos, que es la conversación entre los integrantes de la comunidad, en este caso docentes y estudiantes, la que da lugar a lo producido. Esta producción puede ser fruto de una idea para resolver un problema, una conjetura a explorar, una manera de mirar una práctica, la emergencia de perspectivas de análisis de actividades para la enseñanza, entre otras posibilidades. Lo que deseamos jerarquizar entonces es una forma de crear que se asienta en el diálogo y, en consecuencia, en la comunicación bidireccional. Esta forma de hacer es la que también tratamos de promover entre nuestros estudiantes, futuros profesores, para sus clases en la enseñanza media. Así, presentamos tres tipos de artículos que responden a diferentes necesidades suscitadas en el seno de la reflexión que docentes y futuros docentes realizamos sobre las prácticas de enseñanza. En primer lugar, incluimos dos artículos que muestran cómo, partiendo de un marco teórico particular dentro de la Matemática Educativa, se pueden elaborar actividades y analizar las producciones de estudiantes de profesorado al resolverlas (Infinito, límite de lo ilimitado y Una experiencia de actividad geométrica en la formación inicial de profesores de matemática). En segundo lugar, ubicamos tres artículos que responden a una práctica que hace a la labor docente, que es el diseño de actividades, enmarcadas, en este caso, en marcos teóricos específicos de la investigación en Matemática Educativa (Diseño de actividades con uso de fotografía, Cuatro momentos en la evolución de la Matemática Educativa ejemplificados a través del concepto de periodicidad y El sentido de los símbolos y las actividades de enseñanza). Por último, presentamos un artículo que brinda herramientas teóricas específicas para el análisis del discurso de aula, pretendiendo aportar a la reflexión sobre ¿Por qué damos un determinado tema de la manera en que lo hacemos? (¿Por qué hacemos lo que hacemos en el aula? Análisis crítico del discurso de un profesor en torno al tema Trigonometría). Esperamos que este trabajo sea el primero de otros que seguramente vendrán para continuar aportando en este proceso de creación colectiva con el que queremos cristalizar, aunque sea parcialmente, nuestra forma de entender la enseñanza de la matemática. Al igual que lo que ocurre en un almendro, los trabajos que aquí presentamos reflejan, como las flores que surgen en primavera, un proceso vivido durante todo el año. A la vez, la metáfora nos permite considerar que es posible que el almendro se ramifique y continúe floreciendo en los años venideros. Gabriela Buendía, Verónica Molfino, Cristina Ochoviet |
dc.description.tableofcontents.ES.fl_txt_mv | Presentación Gabriela Buendía, Verónica Molfino, Cristina Ochoviet Infinito, límite de lo ilimitado Sofía Acosta, Gabriela Figares, Victoria López, Victoria Mesa, Verónica Molfino, Florencia Rivero Una experiencia de actividad geométrica en la formación inicial de profesores de matemática Mario Dalcín, Alvaro Rosa Diseño de actividades con uso de fotografía Marcelo Astorucci, Víctor Bonello, Fiorella Giovannini, Cristina Ochoviet, Camila Padilla Cuatro momentos en la evolución de la Matemática Educativa ejemplificados a través del concepto de periodicidad Sofía Acosta, Gabriela Figares, Victoria López, Victoria Mesa, verónica Molfino, Florencia Rivero El sentido de los símbolos y las actividades de enseñanza Camila Padilla, Patricia Navarro, Cecilia Corujo, Cristina Ochoviet ¿Por qué hacemos lo que hacemos en el aula? Análisis crítico del discurso de un profesor en torno al tema Trigonometría Franca Levin, Verónica Molfino |
dc.format.ES.fl_str_mv | pdf |
dc.format.extent.ES.fl_str_mv | 135 p. |
dc.identifier.isbn.ES.fl_str_mv | 978-9974-711-37-2 |
dc.identifier.uri.none.fl_str_mv | http://repositorio.cfe.edu.uy/handle/123456789/368 |
dc.language.iso.none.fl_str_mv | spa |
dc.publisher.ES.fl_str_mv | CFE. Departamento de matemática |
dc.rights.ES.fl_str_mv | openAccess |
dc.rights.license.none.fl_str_mv | cc by-nc-nd 4.0 |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:RIdAA-CFE instname:ANEP. Consejo de Formación en Educación instacron:ANEP. Consejo de Formación en Educación |
dc.subject.ES.fl_str_mv | Formación de docentes Enseñanza de las matemáticas |
dc.subject.keywords.ES.fl_str_mv | Investigación educativa |
dc.title.none.fl_str_mv | Estrechando lazos entre investigación y formación en Matemática Educativa Experiencias conjuntas de docentes y futuros docentes |
dc.type.ES.fl_str_mv | info:eu-repo/semantics/book |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Vincent van Gogh pintó Almendro en flor en homenaje al nacimiento de su sobrino en el año 1890. Las ramas florecidas de este árbol son símbolo de la llegada de la primavera, anuncian lo nuevo, lo que renace. En varias leyendas aparecen hombres o mujeres que se metamorfosean en un almendro y es la presencia de las flores en sus ramas la que representa la vida humana que alberga en su interior. Elegimos esta metáfora para representar lo desarrollado en este libro porque, además de ser una idea que surge en primavera, sentimos que a través de él estamos dando lugar a muchas cosas nuevas. En primer lugar, este libro reúne producciones que han sido elaboradas por profesores y estudiantes de la especialidad Matemática del Instituto de Profesores Artigas. Esta particularidad refleja un trabajar juntos, la posibilidad de dar lugar a lo nuevo desde el trabajo de clase de distintas asignaturas y sitúa tanto a docentes como a estudiantes en el plano de la creación compartida. En segundo lugar, el libro da cuenta de que es posible pensar la enseñanza de la matemática mediada por los aportes de la investigación. La relación entre la práctica y la investigación continúa siendo un problema a resolver desde la comunidad de educadores matemáticos: ¿cómo lograr que el conocimiento creado desde la investigación enriquezca las prácticas de aula? Y asimismo, ¿cómo el conocimiento creado en la práctica puede retroalimentar lo producido en la investigación? Intentamos entonces aportar a esta relación tomando diversos resultados como referencia para, a partir de ellos, ensayar actividades de enseñanza y en algunos casos, experimentarlas en aula para luego reflexionar sobre lo sucedido y aprender de ese proceso. En otros, el trabajo teórico se realizó desde otro punto de vista: ¿cómo puede ayudarnos una perspectiva teórica para analizar prácticas de aula? Y también: ¿cómo puede modelarse teóricamente una práctica desde un cierto marco? En tercer lugar, queremos destacar una idea que atraviesa todos los artículos, que es la conversación entre los integrantes de la comunidad, en este caso docentes y estudiantes, la que da lugar a lo producido. Esta producción puede ser fruto de una idea para resolver un problema, una conjetura a explorar, una manera de mirar una práctica, la emergencia de perspectivas de análisis de actividades para la enseñanza, entre otras posibilidades. Lo que deseamos jerarquizar entonces es una forma de crear que se asienta en el diálogo y, en consecuencia, en la comunicación bidireccional. Esta forma de hacer es la que también tratamos de promover entre nuestros estudiantes, futuros profesores, para sus clases en la enseñanza media. Así, presentamos tres tipos de artículos que responden a diferentes necesidades suscitadas en el seno de la reflexión que docentes y futuros docentes realizamos sobre las prácticas de enseñanza. En primer lugar, incluimos dos artículos que muestran cómo, partiendo de un marco teórico particular dentro de la Matemática Educativa, se pueden elaborar actividades y analizar las producciones de estudiantes de profesorado al resolverlas (Infinito, límite de lo ilimitado y Una experiencia de actividad geométrica en la formación inicial de profesores de matemática). En segundo lugar, ubicamos tres artículos que responden a una práctica que hace a la labor docente, que es el diseño de actividades, enmarcadas, en este caso, en marcos teóricos específicos de la investigación en Matemática Educativa (Diseño de actividades con uso de fotografía, Cuatro momentos en la evolución de la Matemática Educativa ejemplificados a través del concepto de periodicidad y El sentido de los símbolos y las actividades de enseñanza). Por último, presentamos un artículo que brinda herramientas teóricas específicas para el análisis del discurso de aula, pretendiendo aportar a la reflexión sobre ¿Por qué damos un determinado tema de la manera en que lo hacemos? (¿Por qué hacemos lo que hacemos en el aula? Análisis crítico del discurso de un profesor en torno al tema Trigonometría). Esperamos que este trabajo sea el primero de otros que seguramente vendrán para continuar aportando en este proceso de creación colectiva con el que queremos cristalizar, aunque sea parcialmente, nuestra forma de entender la enseñanza de la matemática. Al igual que lo que ocurre en un almendro, los trabajos que aquí presentamos reflejan, como las flores que surgen en primavera, un proceso vivido durante todo el año. A la vez, la metáfora nos permite considerar que es posible que el almendro se ramifique y continúe floreciendo en los años venideros. Gabriela Buendía, Verónica Molfino, Cristina Ochoviet |
eu_rights_str_mv | openAccess |
format | book |
id | CFE_961ac7a174a916a5aae21cda47885c6d |
identifier_str_mv | 978-9974-711-37-2 |
instacron_str | ANEP. Consejo de Formación en Educación |
institution | ANEP. Consejo de Formación en Educación |
instname_str | ANEP. Consejo de Formación en Educación |
language | spa |
network_acronym_str | CFE |
network_name_str | RIdAA-CFE |
oai_identifier_str | oai:repositorio.cfe.edu.uy:123456789/368 |
publishDate | 2014 |
reponame_str | RIdAA-CFE |
repository.mail.fl_str_mv | mariavaleriapaulo@gmail.com |
repository.name.fl_str_mv | RIdAA-CFE - ANEP. Consejo de Formación en Educación |
repository_id_str | 10159 |
rights_invalid_str_mv | cc by-nc-nd 4.0 openAccess |
spelling | cc by-nc-nd 4.0openAccessinfo:eu-repo/semantics/openAccessBuendía, GabrielaMolfino Vigo, VerónicaOchoviet, CristinaCFECFECFEComp.Comp.Comp.2019-11-07T18:06:00Z2019-11-07T18:06:00Z2014-112019-11-06978-9974-711-37-2http://repositorio.cfe.edu.uy/handle/123456789/368Vincent van Gogh pintó Almendro en flor en homenaje al nacimiento de su sobrino en el año 1890. Las ramas florecidas de este árbol son símbolo de la llegada de la primavera, anuncian lo nuevo, lo que renace. En varias leyendas aparecen hombres o mujeres que se metamorfosean en un almendro y es la presencia de las flores en sus ramas la que representa la vida humana que alberga en su interior. Elegimos esta metáfora para representar lo desarrollado en este libro porque, además de ser una idea que surge en primavera, sentimos que a través de él estamos dando lugar a muchas cosas nuevas. En primer lugar, este libro reúne producciones que han sido elaboradas por profesores y estudiantes de la especialidad Matemática del Instituto de Profesores Artigas. Esta particularidad refleja un trabajar juntos, la posibilidad de dar lugar a lo nuevo desde el trabajo de clase de distintas asignaturas y sitúa tanto a docentes como a estudiantes en el plano de la creación compartida. En segundo lugar, el libro da cuenta de que es posible pensar la enseñanza de la matemática mediada por los aportes de la investigación. La relación entre la práctica y la investigación continúa siendo un problema a resolver desde la comunidad de educadores matemáticos: ¿cómo lograr que el conocimiento creado desde la investigación enriquezca las prácticas de aula? Y asimismo, ¿cómo el conocimiento creado en la práctica puede retroalimentar lo producido en la investigación? Intentamos entonces aportar a esta relación tomando diversos resultados como referencia para, a partir de ellos, ensayar actividades de enseñanza y en algunos casos, experimentarlas en aula para luego reflexionar sobre lo sucedido y aprender de ese proceso. En otros, el trabajo teórico se realizó desde otro punto de vista: ¿cómo puede ayudarnos una perspectiva teórica para analizar prácticas de aula? Y también: ¿cómo puede modelarse teóricamente una práctica desde un cierto marco? En tercer lugar, queremos destacar una idea que atraviesa todos los artículos, que es la conversación entre los integrantes de la comunidad, en este caso docentes y estudiantes, la que da lugar a lo producido. Esta producción puede ser fruto de una idea para resolver un problema, una conjetura a explorar, una manera de mirar una práctica, la emergencia de perspectivas de análisis de actividades para la enseñanza, entre otras posibilidades. Lo que deseamos jerarquizar entonces es una forma de crear que se asienta en el diálogo y, en consecuencia, en la comunicación bidireccional. Esta forma de hacer es la que también tratamos de promover entre nuestros estudiantes, futuros profesores, para sus clases en la enseñanza media. Así, presentamos tres tipos de artículos que responden a diferentes necesidades suscitadas en el seno de la reflexión que docentes y futuros docentes realizamos sobre las prácticas de enseñanza. En primer lugar, incluimos dos artículos que muestran cómo, partiendo de un marco teórico particular dentro de la Matemática Educativa, se pueden elaborar actividades y analizar las producciones de estudiantes de profesorado al resolverlas (Infinito, límite de lo ilimitado y Una experiencia de actividad geométrica en la formación inicial de profesores de matemática). En segundo lugar, ubicamos tres artículos que responden a una práctica que hace a la labor docente, que es el diseño de actividades, enmarcadas, en este caso, en marcos teóricos específicos de la investigación en Matemática Educativa (Diseño de actividades con uso de fotografía, Cuatro momentos en la evolución de la Matemática Educativa ejemplificados a través del concepto de periodicidad y El sentido de los símbolos y las actividades de enseñanza). Por último, presentamos un artículo que brinda herramientas teóricas específicas para el análisis del discurso de aula, pretendiendo aportar a la reflexión sobre ¿Por qué damos un determinado tema de la manera en que lo hacemos? (¿Por qué hacemos lo que hacemos en el aula? Análisis crítico del discurso de un profesor en torno al tema Trigonometría). Esperamos que este trabajo sea el primero de otros que seguramente vendrán para continuar aportando en este proceso de creación colectiva con el que queremos cristalizar, aunque sea parcialmente, nuestra forma de entender la enseñanza de la matemática. Al igual que lo que ocurre en un almendro, los trabajos que aquí presentamos reflejan, como las flores que surgen en primavera, un proceso vivido durante todo el año. A la vez, la metáfora nos permite considerar que es posible que el almendro se ramifique y continúe floreciendo en los años venideros. Gabriela Buendía, Verónica Molfino, Cristina OchovietPresentación Gabriela Buendía, Verónica Molfino, Cristina Ochoviet Infinito, límite de lo ilimitado Sofía Acosta, Gabriela Figares, Victoria López, Victoria Mesa, Verónica Molfino, Florencia Rivero Una experiencia de actividad geométrica en la formación inicial de profesores de matemática Mario Dalcín, Alvaro Rosa Diseño de actividades con uso de fotografía Marcelo Astorucci, Víctor Bonello, Fiorella Giovannini, Cristina Ochoviet, Camila Padilla Cuatro momentos en la evolución de la Matemática Educativa ejemplificados a través del concepto de periodicidad Sofía Acosta, Gabriela Figares, Victoria López, Victoria Mesa, verónica Molfino, Florencia Rivero El sentido de los símbolos y las actividades de enseñanza Camila Padilla, Patricia Navarro, Cecilia Corujo, Cristina Ochoviet ¿Por qué hacemos lo que hacemos en el aula? Análisis crítico del discurso de un profesor en torno al tema Trigonometría Franca Levin, Verónica Molfinopdf135 p.spaCFE. Departamento de matemáticaFormación de docentesEnseñanza de las matemáticasInvestigación educativaEstrechando lazos entre investigación y formación en Matemática Educativa Experiencias conjuntas de docentes y futuros docentesinfo:eu-repo/semantics/bookinfo:eu-repo/semantics/publishedVersionreponame:RIdAA-CFEinstname:ANEP. Consejo de Formación en Educacióninstacron:ANEP. Consejo de Formación en EducaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-86084http://repositorio.cfe.edu.uy/bitstream/123456789/368/1/license.txtdf766076a5772cb4184b94046e67735aMD51ORIGINALBuendia,G.Estrechando.pdfBuendia,G.Estrechando.pdfapplication/pdf4107893http://repositorio.cfe.edu.uy/bitstream/123456789/368/2/Buendia%2cG.Estrechando.pdf2abfb606b0dc30659cfa9aa1758b33e6MD52TEXTBuendia,G.Estrechando.pdf.txtBuendia,G.Estrechando.pdf.txtExtracted texttext/plain173676http://repositorio.cfe.edu.uy/bitstream/123456789/368/3/Buendia%2cG.Estrechando.pdf.txtf750f7628c1f0a1014f5e37277635f33MD53THUMBNAILBuendia,G.Estrechando.pdf.jpgBuendia,G.Estrechando.pdf.jpgGenerated Thumbnailimage/jpeg2053http://repositorio.cfe.edu.uy/bitstream/123456789/368/4/Buendia%2cG.Estrechando.pdf.jpg3156c503a6c0784ef2be3ecf6e0f4fc2MD54123456789/3682019-11-12 11:28:16.164oai:repositorio.cfe.edu.uy:123456789/368Cgo8cD4xLSBDRVNJw5NOIERFIERFUkVDSE9TIFkgQVVUT1JJWkFDSU9ORVM8L3A+CjxwPjItIFVTT1MgREUgTEEgT0JSQTwvcD4KPHA+My0gUkVUSVJPPC9wPgo8cD40LSBFWEVOQ0nDk04gREUgUkVTUE9OU0FCSUxJREFEIERFTCBSRVBPU0lUT1JJTzwvcD4KPHA+NS0gTElDRU5DSUEgRVNUQU5EQVI8L3A+CgoKCjxiPjEgLSBDRVNJw5NOIERFIERFUkVDSE9TIFkgQVVUT1JJWkFDSU9ORVM8L2I+CgpFbCBBVVRPUiBkZWNsYXJhIHF1ZSBvc3RlbnRhIGxhIGNvbmRpY2nDs24gZGUgVElUVUxBUiBvIENPLVRJVFVMQVIgZGUgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBkZSBsYSBvYnJhIChlbiBhZGVsYW50ZSBkZW5vbWluYWRhIOKAnExBIE9CUkHigJ0pIGRlcG9zaXRhZGEgZW4gZWwgUkVQT1NJVE9SSU8geSBxdWUgb2J0dXZvIGVsIHBlcm1pc28gZGUgbG9zIGNvLWF1dG9yZXMgZGUgZXhpc3RpciBlc3Rvcy4KCkVMIEFVVE9SIGNlZGUgYSBlbCBSRVBPU0lUT1JJTywgZGUgZm9ybWEgZ3JhdHVpdGEgeSBubyBleGNsdXNpdmEsIHBvciBlbCBtw6F4aW1vIHBsYXpvIGxlZ2FsIHkgY29uIMOhbWJpdG8gdW5pdmVyc2FsLCBsb3MgZGVyZWNob3MgZGUgcmVwcm9kdWNjacOzbiwgZGlzdHJpYnVjacOzbiB5IGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgZGUgTEEgT0JSQSBwb3IgY3VhbHF1aWVyIG1lZGlvIHkgc29wb3J0ZS4KCkFzaW1pc21vIGF1dG9yaXphIGFsIFJFUE9TSVRPUklPIGE6CihhKSBUcmFuc2Zvcm1hciBMQSBPQlJBIMO6bmljYW1lbnRlIGVuIGxhIG1lZGlkYSBlbiBxdWUgZWxsbyBzZWEgbmVjZXNhcmlvLCBwYXJhIHBlcm1pdGlyIHN1IGNvbXVuaWNhY2nDs24sIHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIGVuIGZvcm1hdG9zIGVsZWN0csOzbmljb3MsIGFzw60gY29tbyBwYXJhICBsYSBpbmNvcnBvcmFjacOzbiBkZSBlbGVtZW50b3MgZGUgc2VndXJpZGFkIHkvbyBpZGVudGlmaWNhY2nDs24gZGUgcHJvY2VkZW5jaWEuIAooYikgQWxtYWNlbmFyIExBIE9CUkEgZW4gc2Vydmlkb3JlcyBkZWwgUkVQT1NJVE9SSU8gYSBsb3MgZWZlY3RvcyBkZSBzZWd1cmlkYWQgeSBwcmVzZXJ2YWNpw7NuLgooYykgUmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBMQSBPQlJBIGFjY2VzaWJsZSBkZSBtb2RvIGxpYnJlIHkgZ3JhdHVpdG8gYSB0cmF2w6lzIGRlIEludGVybmV0IGVuIGxvcyBwb3J0YWxlcyBpbnN0aXR1Y2lvbmFsZXMgZGUgZWwgUkVQT1NJVE9SSU8geSBlbiBsb3MgcmVwb3NpdG9yaW9zIGRpZ2l0YWxlcyBxdWUgc2UgY29uZm9ybWVuIHN1IMOhbWJpdG8uCgo8cD4KPGI+MiAtIFVTT1MgREUgTEEgT0JSQTwvYj4KRW4gdmlydHVkIGRlbCBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZvIGRlIGVzdGUgYWN1ZXJkbywgRUwgQVVUT1IgY29uc2VydmEgdG9kb3Mgc3VzIGRlcmVjaG9zLCBwb3IgbG8gcXVlIHBvZHLDoSBjb211bmljYXIgeSBwdWJsaWNhciBsaWJyZW1lbnRlIGEgTEEgT0JSQSwgZW4gY3VhbHF1aWVyYSBkZSBzdXMgdmVyc2lvbmVzLCBhIHRyYXbDqXMgZGUgbG9zIG1lZGlvcyBxdWUgZXN0aW1lIG9wb3J0dW5vcy4KPC9wPgoKPHA+CjxiPjMgLSBSRVRJUk88L2I+CkVMIEFVVE9SIHBvZHLDoSBzb2xpY2l0YXIgZWwgcmV0aXJvIGRlIExBIE9CUkEgZGUgRUwgUkVQT1NJVE9SSU8gcG9yIGNhdXNhIGRlYmlkYW1lbnRlIGp1c3RpZmljYWRhIHkgYWNyZWRpdGFkYSBwb3IgZXNjcml0byBhbnRlIGxhIENvbWlzacOzbiBkZWwgUkVQT1NJVE9SSU8gKHJlcG9zaXRvcmlvQGNmZS5lZHUudXkpLgoKQXNpbWlzbW8sIGVsIFJFUE9TSVRPUklPIHBvZHLDoSByZXRpcmFyIGxhIE9CUkEgZW4gc3VwdWVzdG9zIHN1ZmljaWVudGVtZW50ZSBqdXN0aWZpY2Fkb3MgbyBmcmVudGUgYSByZWNsYW1hY2lvbmVzIGRlIHRlcmNlcm9zLgoKPC9wPgo8cD4KCgo8Yj40IC0gRVhFTkNJw5NOIERFIFJFU1BPTlNBQklMSURBRCBERUwgUkVQT1NJVE9SSU88L2I+CgpFTCBBVVRPUiBkZWNsYXJhIGJham8ganVyYW1lbnRvIHF1ZToKCihhKSBsYSBwcmVzZW50ZSBjZXNpw7NuIG5vIGluZnJpbmdlIG5pbmfDum4gZGVyZWNobyBkZSB0ZXJjZXJvcywgeWEgc2VhIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsLCBpbnRlbGVjdHVhbCBvIGN1YWxxdWllciBvdHJvLAoKKGIpIGxhIGluZm9ybWFjacOzbiBwcm9wb3JjaW9uYWRhIHNvYnJlIExBIE9CUkEgZXMgdmVyYXogeSBjb3JyZWN0YS4KQXNpbWlzbW8sIGdhcmFudGl6YSBxdWUgZWwgY29udGVuaWRvIGRlIExBIE9CUkEgbm8gYXRlbnRhIGNvbnRyYSBsb3MgZGVyZWNob3MgYWwgaG9ub3IsIGEgbGEgaW50aW1pZGFkIHkgYSBsYSBpbWFnZW4gZGUgdGVyY2Vyb3MuCgpFTCBBVVRPUiwgY29tbyBnYXJhbnRlIGRlIGxhIGF1dG9yw61hIGRlIExBIE9CUkEgeSBlbiByZWxhY2nDs24gYSBsYSBtaXNtYSwgZGVjbGFyYSBxdWUgRUwgUkVQT1NJVE9SSU8gc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCAoaW5jbHVpZG8gZWwgcmVjbGFtbyBwb3IgcGxhZ2lvKSB5IHF1ZSDDqWwgbWlzbW8gYXN1bWUgbGEgcmVzcG9uc2FiaWxpZGFkIGZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1vIG8gZGVtYW5kYSBwb3IgcGFydGUgZGUgdGVyY2Vyb3MgZGUgbWFuZXJhIGV4Y2x1c2l2YS4gRUwgUkVQT1NJVE9SSU8gc2Ugb2JsaWdhIGEgY29tdW5pY2FyIGFsIEFVVE9SIGFudGUgY3VhbHF1aWVyIHJlY2xhbW8gbyBkZW1hbmRhLgo8L3A+CgoKPGI+NS0gTElDRU5DSUEgRVNUQU5EQVI8L2I+CgpMQSBPQlJBIHNlIHBvbmRyw6EgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvIHBhcmEgcXVlIGhhZ2EgZGUgZWxsYSB1biB1c28ganVzdG8geSByZXNwZXR1b3NvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgc2llbmRvIHJlcXVpc2l0byBjdW1wbGlyIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgbGEgbGljZW5jaWEgZGUgdXNvIHF1ZSBzZWxlY2Npb25lIEVMIEFVVE9SLiAKCkVsIFJFUE9TSVRPUklPIHNlIGNvbXByb21ldGUgYSBleHBvbmVyLCBqdW50byBhIExBIE9CUkEsIGxhIGxpY2VuY2lhIGRlIHVzbyBlbGVnaWRhIHBvciBlbCBBVVRPUiBlbiBlc3RlIGZvcm11bGFyaW8gZGUgY2FyZ2EganVudG8gY29uIHN1IGRlc2NyaXBjacOzbiBhIHBhcnRpciBkZSB1biBlbmxhY2Ugd2ViIHDDumJsaWNvLCB5IG5vIGFzdW1pcsOhIHJlc3BvbnNhYmlsaWRhZCBhbGd1bmEgcG9yIG90cm9zIHVzb3MgZGUgdGVyY2Vyb3Mgbm8gYXV0b3JpemFkb3MgbyBjb250cmFyaW9zIGEgbGEgbGVnaXNsYWNpw7NuIHZpZ2VudGUuCgpBIGNvbnRpbnVhY2nDs24gc2UgZGVzY3JpYmVuIGxhcyBvcGNpb25lcyBkZSBsaWNlbmNpYW1pZW50byBvZnJlY2lkYXMgcG9yIGVsIHJlcG9zaXRvcmlvIChxdWUgZGViZXLDoSBzZWxlY2Npb25hciBtw6FzIGFkZWxhbnRlIGVuIGVzdGUgZm9ybXVsYXJpbyk6Cgo8cD4KPGI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9uczogQXRyaWJ1Y2nDs24gKENDIEJZKTwvYj4KUGVybWl0ZSBhIG90cm9zIGRpc3RyaWJ1aXIsIGFkYXB0YXIsIHJldG9jYXIgeSBjcmVhciBhIHBhcnRpciBkZSB0dSBvYnJhLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSB5IGN1YW5kbyBzZSBvdG9yZ3VlIGNyw6lkaXRvIGEgbGEgY3JlYWNpw7NuIG9yaWdpbmFsLiBUw6lybWlub3MgY29tcGxldG9zIGRlIGxhIGxpY2VuY2lhIGRpc3BvbmlibGVzICBlbjogPGEgaHJlZj0iaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LzQuMC9kZWVkLmVzIj5odHRwczovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnkvNC4wL2RlZWQuZXM8L2E+CjwvcD4KPHA+CjxiPkxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnM6IEF0cmlidWNpw7NuIC0gQ29tcGFydGlyIGlndWFsIChDQyBCWS1TQSk8L2I+ClBlcm1pdGUgYSBvdHJvcyBhZGFwdGFyLCByZWZ1bmRpciwgeSBjcmVhciBhIHBhcnRpciBkZSB0dSBvYnJhLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSB5IGN1YW5kbyBzZSBvdG9yZ3VlIGNyw6lkaXRvIHkgc2UgbGljZW5jaWVuIGxhcyBvYnJhcyBkZXJpdmFkYXMgYmFqbyBjb25kaWNpb25lcyBpZMOpbnRpY2FzIGEgbGEgY3JlYWNpw7NuIG9yaWdpbmFsLiBUw6lybWlub3MgY29tcGxldG9zIGRlIGxhIGxpY2VuY2lhIGRpc3BvbmlibGVzIGVuOiA8YSBocmVmPSJodHRwczovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktc2EvNC4wL2RlZWQuZXMiPmh0dHBzOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1zYS80LjAvZGVlZC5lczwvYT4gCjwvcD4KPHA+Cgo8Yj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zOiBBdHJpYnVjacOzbiAtIE5vIERlcml2YWRhcyAoQ0MgQlktTkQpPC9iPgpQZXJtaXRlIGxhIHJlZGlzdHJpYnVjacOzbiwgY29tZXJjaWFsIG8gbm8gY29tZXJjaWFsLCBzaWVtcHJlIHkgY3VhbmRvIHNlIG90b3JndWUgY3LDqWRpdG8geSBsYSBvYnJhIGNpcmN1bGUgw61udGVncmEgeSBzaW4gY2FtYmlvcy4gVMOpcm1pbm9zIGNvbXBsZXRvcyBkZSBsYSBsaWNlbmNpYSBkaXNwb25pYmxlcyBlbjogPGEgaHJlZj0iaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5kLzQuMC9kZWVkLmVzIj5odHRwczovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmQvNC4wL2RlZWQuZXM8L2E+IAo8L3A+CjxwPgoKPGI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9uczogQXRyaWJ1Y2nDs24gLSBObyBDb21lcmNpYWwgKENDIEJZLU5DKTwvYj4KUGVybWl0ZSBhIG90cm9zIGRpc3RyaWJ1aXIsIGFkYXB0YXIgeSBjcmVhciBhIHBhcnRpciBkZSB0dSBvYnJhLCBkZSBtb2RvIG5vIGNvbWVyY2lhbCB5IG90b3JnYW5kbyBjcsOpZGl0by4gVMOpcm1pbm9zIGNvbXBsZXRvcyBkZSBsYSBsaWNlbmNpYSBkaXNwb25pYmxlcyBlbjogPGEgaHJlZj0iaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLzQuMC9kZWVkLmVzIj5odHRwczovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wL2RlZWQuZXM8L2E+IAo8L3A+CjxwPgoKPGI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9uczogQXRyaWJ1Y2nDs24gLSBObyBDb21lcmNpYWwgLSBDb21wYXJ0aXIgSWd1YWwgKENDIEJZLU5DLVNBKQo8L2I+ClBlcm1pdGUgYSBvdHJvcyBkaXN0cmlidWlyLCBhZGFwdGFyLCByZXRvY2FyIHkgY3JlYXIgYSBwYXJ0aXIgZGUgdHUgb2JyYSBkZSBtb2RvIG5vIGNvbWVyY2lhbCwgc2llbXByZSB5IGN1YW5kbyBsZSBvdG9yZ3VlIGNyw6lkaXRvIHkgc2UgbGljZW5jaWVuIGxhcyBvYnJhcyBkZXJpdmFkYXMgYmFqbyBjb25kaWNpb25lcyBpZMOpbnRpY2FzLiBUw6lybWlub3MgY29tcGxldG9zIGRlIGxhIGxpY2VuY2lhIGRpc3BvbmlibGVzIGVuOiA8YSBocmVmPSJodHRwczovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMtc2EvNC4wL2RlZWQuZXMiPmh0dHBzOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy1zYS80LjAvZGVlZC5lczwvYT4gCjwvcD4KPHA+Cgo8Yj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zOiBBdHJpYnVjacOzbiAtIE5vIENvbWVyY2lhbCAtIE5vIERlcml2YWRhcyAoQ0MgQlktTkMtTkQpPC9iPgpQZXJtaXRlIGEgb3Ryb3MgZGVzY2FyZ2FyIHR1cyBvYnJhcyB5IGNvbXBhcnRpcmxhcyBjb24gb3Ryb3Mgc2llbXByZSB5IGN1YW5kbyBzZSBvdG9yZ3VlIGNyw6lkaXRvLCBwZXJvIG5vIHBlcm1pdGVuIGNhbWJpYXJsYXMgZGUgZm9ybWEgYWxndW5hIG5pIHVzYXJsYXMgY29tZXJjaWFsbWVudGUuIFTDqXJtaW5vcyBjb21wbGV0b3MgZGUgbGEgbGljZW5jaWEgZGlzcG9uaWJsZXMgZW46IDxhIGhyZWY9Imh0dHBzOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy1uZC80LjAvZGVlZC5lcyI+aHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC9kZWVkLmVzPC9hPgoKPC9wPgoKGobiernohttps://cfe.edu.uy/https://repositorio.cfe.edu.uy/oai/requestmariavaleriapaulo@gmail.comUruguayopendoar:101592024-07-25T16:07:39.885316RIdAA-CFE - ANEP. Consejo de Formación en Educaciónfalse |
spellingShingle | Estrechando lazos entre investigación y formación en Matemática Educativa Experiencias conjuntas de docentes y futuros docentes Buendía, Gabriela Formación de docentes Enseñanza de las matemáticas Investigación educativa |
status_str | publishedVersion |
title | Estrechando lazos entre investigación y formación en Matemática Educativa Experiencias conjuntas de docentes y futuros docentes |
title_full | Estrechando lazos entre investigación y formación en Matemática Educativa Experiencias conjuntas de docentes y futuros docentes |
title_fullStr | Estrechando lazos entre investigación y formación en Matemática Educativa Experiencias conjuntas de docentes y futuros docentes |
title_full_unstemmed | Estrechando lazos entre investigación y formación en Matemática Educativa Experiencias conjuntas de docentes y futuros docentes |
title_short | Estrechando lazos entre investigación y formación en Matemática Educativa Experiencias conjuntas de docentes y futuros docentes |
title_sort | Estrechando lazos entre investigación y formación en Matemática Educativa Experiencias conjuntas de docentes y futuros docentes |
topic | Formación de docentes Enseñanza de las matemáticas Investigación educativa |
url | http://repositorio.cfe.edu.uy/handle/123456789/368 |