De tareas estándar a tareas desafiantes: diseño de actividades para la enseñanza del álgebra lineal

González, Silvina

Supervisor(es): Molfino Vigo, Verónica - Ochoviet, Cristina

Resumen:

Este trabajo pretende estrechar la brecha existente en la formación de futuros docentes de matemática, entre la matemática que se aprende durante la carrera y aquella que deberán enseñar quienes se están formando. Si al mismo tiempo el qué enseñar y el cómo hacerlo se entrelazan en la misma asignatura, la formación resulta más eficiente. Para esto consideramos incorporar la componente del desafío en las propuestas de enseñanza, y trabajar en particular con las tareas de final abierto. Además, explicitamos el rol del docente y de los estudiantes al proponer este tipo de tareas en el aula. Para ejemplificar el diseño de este tipo de tareas en la formación de profesores realizamos el análisis de un práctico de un curso de Geometría y Álgebra lineal de un instituto de formación docente, y clasificamos las tareas según si son tareas de final abierto o no y según el nivel de exigencia cognitiva. El tema principal del práctico es cálculo y propiedades del determinante de una matriz. A partir de esto seleccionamos dos tareas y las modificamos para transformarlas en tareas de final abierto, y justificamos por qué esas nuevas tareas pueden ser consideradas desafiantes. También realizamos el análisis a priori y elaboramos algunas recomendaciones.


Detalles Bibliográficos
2021
Formación de docentes
geometría
Enseñanza de las matemáticas
Español
ANEP. Consejo de Formación en Educación
RIdAA-CFE
http://repositorio.cfe.edu.uy/handle/123456789/1358
Acceso abierto
cc by-nc-nd 4.0
_version_ 1815416024076386304
author González, Silvina
author_facet González, Silvina
author_role author
bitstream.checksum.fl_str_mv 48dc3fce5ac988ddbfb425c4b7d935c1
df766076a5772cb4184b94046e67735a
1c7310968ca274cfca4bac79c94f6ab8
760055a924a48ae1be4d2574af78eab9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://repositorio.cfe.edu.uy/bitstream/123456789/1358/2/Gonz%c3%a1lez%2c%20S%2c%2c%20De%20Tareas.pdf
http://repositorio.cfe.edu.uy/bitstream/123456789/1358/1/license.txt
http://repositorio.cfe.edu.uy/bitstream/123456789/1358/3/Gonz%c3%a1lez%2c%20S%2c%2c%20De%20Tareas.pdf.txt
http://repositorio.cfe.edu.uy/bitstream/123456789/1358/4/Gonz%c3%a1lez%2c%20S%2c%2c%20De%20Tareas.pdf.jpg
collection RIdAA-CFE
dc.creator.advisor.none.fl_str_mv Molfino Vigo, Verónica
Ochoviet, Cristina
dc.creator.filiacion.ES.fl_str_mv ANEP CFE
dc.creator.none.fl_str_mv González, Silvina
dc.date.accessioned.none.fl_str_mv 2021-05-23T23:50:17Z
dc.date.available.none.fl_str_mv 2021-05-23T23:50:17Z
dc.date.issued.none.fl_str_mv 2021
dc.date.submitted.none.fl_str_mv 2021-05-23
dc.description.abstract.none.fl_txt_mv Este trabajo pretende estrechar la brecha existente en la formación de futuros docentes de matemática, entre la matemática que se aprende durante la carrera y aquella que deberán enseñar quienes se están formando. Si al mismo tiempo el qué enseñar y el cómo hacerlo se entrelazan en la misma asignatura, la formación resulta más eficiente. Para esto consideramos incorporar la componente del desafío en las propuestas de enseñanza, y trabajar en particular con las tareas de final abierto. Además, explicitamos el rol del docente y de los estudiantes al proponer este tipo de tareas en el aula. Para ejemplificar el diseño de este tipo de tareas en la formación de profesores realizamos el análisis de un práctico de un curso de Geometría y Álgebra lineal de un instituto de formación docente, y clasificamos las tareas según si son tareas de final abierto o no y según el nivel de exigencia cognitiva. El tema principal del práctico es cálculo y propiedades del determinante de una matriz. A partir de esto seleccionamos dos tareas y las modificamos para transformarlas en tareas de final abierto, y justificamos por qué esas nuevas tareas pueden ser consideradas desafiantes. También realizamos el análisis a priori y elaboramos algunas recomendaciones.
dc.format.ES.fl_str_mv pdf
dc.format.extent.ES.fl_str_mv 33 p.
dc.identifier.uri.none.fl_str_mv http://repositorio.cfe.edu.uy/handle/123456789/1358
dc.language.iso.none.fl_str_mv spa
dc.publisher.ES.fl_str_mv ANEP
UdelaR
dc.rights.ES.fl_str_mv openAccess
dc.rights.license.none.fl_str_mv cc by-nc-nd 4.0
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:RIdAA-CFE
instname:ANEP. Consejo de Formación en Educación
instacron:ANEP. Consejo de Formación en Educación
dc.subject.ES.fl_str_mv Formación de docentes
geometría
Enseñanza de las matemáticas
dc.title.none.fl_str_mv De tareas estándar a tareas desafiantes: diseño de actividades para la enseñanza del álgebra lineal
dc.type.ES.fl_str_mv Trabajo Final de Especialización
dc.type.version.ES.fl_str_mv accepted
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Este trabajo pretende estrechar la brecha existente en la formación de futuros docentes de matemática, entre la matemática que se aprende durante la carrera y aquella que deberán enseñar quienes se están formando. Si al mismo tiempo el qué enseñar y el cómo hacerlo se entrelazan en la misma asignatura, la formación resulta más eficiente. Para esto consideramos incorporar la componente del desafío en las propuestas de enseñanza, y trabajar en particular con las tareas de final abierto. Además, explicitamos el rol del docente y de los estudiantes al proponer este tipo de tareas en el aula. Para ejemplificar el diseño de este tipo de tareas en la formación de profesores realizamos el análisis de un práctico de un curso de Geometría y Álgebra lineal de un instituto de formación docente, y clasificamos las tareas según si son tareas de final abierto o no y según el nivel de exigencia cognitiva. El tema principal del práctico es cálculo y propiedades del determinante de una matriz. A partir de esto seleccionamos dos tareas y las modificamos para transformarlas en tareas de final abierto, y justificamos por qué esas nuevas tareas pueden ser consideradas desafiantes. También realizamos el análisis a priori y elaboramos algunas recomendaciones.
eu_rights_str_mv openAccess
format alización
id CFE_59e5b05ac5cfa72b09ba2eb260d1e893
instacron_str ANEP. Consejo de Formación en Educación
institution ANEP. Consejo de Formación en Educación
instname_str ANEP. Consejo de Formación en Educación
language spa
network_acronym_str CFE
network_name_str RIdAA-CFE
oai_identifier_str oai:repositorio.cfe.edu.uy:123456789/1358
publishDate 2021
reponame_str RIdAA-CFE
repository.mail.fl_str_mv mariavaleriapaulo@gmail.com
repository.name.fl_str_mv RIdAA-CFE - ANEP. Consejo de Formación en Educación
repository_id_str 10159
rights_invalid_str_mv cc by-nc-nd 4.0
openAccess
spelling cc by-nc-nd 4.0openAccessinfo:eu-repo/semantics/openAccessGonzález, SilvinaANEP CFEMolfino Vigo, VerónicaOchoviet, Cristina2021-05-23T23:50:17Z2021-05-23T23:50:17Z20212021-05-23http://repositorio.cfe.edu.uy/handle/123456789/1358Este trabajo pretende estrechar la brecha existente en la formación de futuros docentes de matemática, entre la matemática que se aprende durante la carrera y aquella que deberán enseñar quienes se están formando. Si al mismo tiempo el qué enseñar y el cómo hacerlo se entrelazan en la misma asignatura, la formación resulta más eficiente. Para esto consideramos incorporar la componente del desafío en las propuestas de enseñanza, y trabajar en particular con las tareas de final abierto. Además, explicitamos el rol del docente y de los estudiantes al proponer este tipo de tareas en el aula. Para ejemplificar el diseño de este tipo de tareas en la formación de profesores realizamos el análisis de un práctico de un curso de Geometría y Álgebra lineal de un instituto de formación docente, y clasificamos las tareas según si son tareas de final abierto o no y según el nivel de exigencia cognitiva. El tema principal del práctico es cálculo y propiedades del determinante de una matriz. A partir de esto seleccionamos dos tareas y las modificamos para transformarlas en tareas de final abierto, y justificamos por qué esas nuevas tareas pueden ser consideradas desafiantes. También realizamos el análisis a priori y elaboramos algunas recomendaciones.pdf33 p.spaANEPUdelaRFormación de docentesgeometríaEnseñanza de las matemáticasDe tareas estándar a tareas desafiantes: diseño de actividades para la enseñanza del álgebra linealTrabajo Final de Especializaciónacceptedinfo:eu-repo/semantics/acceptedVersionreponame:RIdAA-CFEinstname:ANEP. Consejo de Formación en Educacióninstacron:ANEP. Consejo de Formación en EducaciónANEP-UdelaRDiploma en Matemática mención EnseñanzaORIGINALGonzález, S,, De Tareas.pdfGonzález, S,, De Tareas.pdfapplication/pdf753269http://repositorio.cfe.edu.uy/bitstream/123456789/1358/2/Gonz%c3%a1lez%2c%20S%2c%2c%20De%20Tareas.pdf48dc3fce5ac988ddbfb425c4b7d935c1MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-86084http://repositorio.cfe.edu.uy/bitstream/123456789/1358/1/license.txtdf766076a5772cb4184b94046e67735aMD51TEXTGonzález, S,, De Tareas.pdf.txtGonzález, S,, De Tareas.pdf.txtExtracted texttext/plain57685http://repositorio.cfe.edu.uy/bitstream/123456789/1358/3/Gonz%c3%a1lez%2c%20S%2c%2c%20De%20Tareas.pdf.txt1c7310968ca274cfca4bac79c94f6ab8MD53THUMBNAILGonzález, S,, De Tareas.pdf.jpgGonzález, S,, De Tareas.pdf.jpgGenerated Thumbnailimage/jpeg1261http://repositorio.cfe.edu.uy/bitstream/123456789/1358/4/Gonz%c3%a1lez%2c%20S%2c%2c%20De%20Tareas.pdf.jpg760055a924a48ae1be4d2574af78eab9MD54123456789/13582022-09-26 10:26:51.327oai:repositorio.cfe.edu.uy:123456789/1358Cgo8cD4xLSBDRVNJw5NOIERFIERFUkVDSE9TIFkgQVVUT1JJWkFDSU9ORVM8L3A+CjxwPjItIFVTT1MgREUgTEEgT0JSQTwvcD4KPHA+My0gUkVUSVJPPC9wPgo8cD40LSBFWEVOQ0nDk04gREUgUkVTUE9OU0FCSUxJREFEIERFTCBSRVBPU0lUT1JJTzwvcD4KPHA+NS0gTElDRU5DSUEgRVNUQU5EQVI8L3A+CgoKCjxiPjEgLSBDRVNJw5NOIERFIERFUkVDSE9TIFkgQVVUT1JJWkFDSU9ORVM8L2I+CgpFbCBBVVRPUiBkZWNsYXJhIHF1ZSBvc3RlbnRhIGxhIGNvbmRpY2nDs24gZGUgVElUVUxBUiBvIENPLVRJVFVMQVIgZGUgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBkZSBsYSBvYnJhIChlbiBhZGVsYW50ZSBkZW5vbWluYWRhIOKAnExBIE9CUkHigJ0pIGRlcG9zaXRhZGEgZW4gZWwgUkVQT1NJVE9SSU8geSBxdWUgb2J0dXZvIGVsIHBlcm1pc28gZGUgbG9zIGNvLWF1dG9yZXMgZGUgZXhpc3RpciBlc3Rvcy4KCkVMIEFVVE9SIGNlZGUgYSBlbCBSRVBPU0lUT1JJTywgZGUgZm9ybWEgZ3JhdHVpdGEgeSBubyBleGNsdXNpdmEsIHBvciBlbCBtw6F4aW1vIHBsYXpvIGxlZ2FsIHkgY29uIMOhbWJpdG8gdW5pdmVyc2FsLCBsb3MgZGVyZWNob3MgZGUgcmVwcm9kdWNjacOzbiwgZGlzdHJpYnVjacOzbiB5IGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgZGUgTEEgT0JSQSBwb3IgY3VhbHF1aWVyIG1lZGlvIHkgc29wb3J0ZS4KCkFzaW1pc21vIGF1dG9yaXphIGFsIFJFUE9TSVRPUklPIGE6CihhKSBUcmFuc2Zvcm1hciBMQSBPQlJBIMO6bmljYW1lbnRlIGVuIGxhIG1lZGlkYSBlbiBxdWUgZWxsbyBzZWEgbmVjZXNhcmlvLCBwYXJhIHBlcm1pdGlyIHN1IGNvbXVuaWNhY2nDs24sIHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIGVuIGZvcm1hdG9zIGVsZWN0csOzbmljb3MsIGFzw60gY29tbyBwYXJhICBsYSBpbmNvcnBvcmFjacOzbiBkZSBlbGVtZW50b3MgZGUgc2VndXJpZGFkIHkvbyBpZGVudGlmaWNhY2nDs24gZGUgcHJvY2VkZW5jaWEuIAooYikgQWxtYWNlbmFyIExBIE9CUkEgZW4gc2Vydmlkb3JlcyBkZWwgUkVQT1NJVE9SSU8gYSBsb3MgZWZlY3RvcyBkZSBzZWd1cmlkYWQgeSBwcmVzZXJ2YWNpw7NuLgooYykgUmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBMQSBPQlJBIGFjY2VzaWJsZSBkZSBtb2RvIGxpYnJlIHkgZ3JhdHVpdG8gYSB0cmF2w6lzIGRlIEludGVybmV0IGVuIGxvcyBwb3J0YWxlcyBpbnN0aXR1Y2lvbmFsZXMgZGUgZWwgUkVQT1NJVE9SSU8geSBlbiBsb3MgcmVwb3NpdG9yaW9zIGRpZ2l0YWxlcyBxdWUgc2UgY29uZm9ybWVuIHN1IMOhbWJpdG8uCgo8cD4KPGI+MiAtIFVTT1MgREUgTEEgT0JSQTwvYj4KRW4gdmlydHVkIGRlbCBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZvIGRlIGVzdGUgYWN1ZXJkbywgRUwgQVVUT1IgY29uc2VydmEgdG9kb3Mgc3VzIGRlcmVjaG9zLCBwb3IgbG8gcXVlIHBvZHLDoSBjb211bmljYXIgeSBwdWJsaWNhciBsaWJyZW1lbnRlIGEgTEEgT0JSQSwgZW4gY3VhbHF1aWVyYSBkZSBzdXMgdmVyc2lvbmVzLCBhIHRyYXbDqXMgZGUgbG9zIG1lZGlvcyBxdWUgZXN0aW1lIG9wb3J0dW5vcy4KPC9wPgoKPHA+CjxiPjMgLSBSRVRJUk88L2I+CkVMIEFVVE9SIHBvZHLDoSBzb2xpY2l0YXIgZWwgcmV0aXJvIGRlIExBIE9CUkEgZGUgRUwgUkVQT1NJVE9SSU8gcG9yIGNhdXNhIGRlYmlkYW1lbnRlIGp1c3RpZmljYWRhIHkgYWNyZWRpdGFkYSBwb3IgZXNjcml0byBhbnRlIGxhIENvbWlzacOzbiBkZWwgUkVQT1NJVE9SSU8gKHJlcG9zaXRvcmlvQGNmZS5lZHUudXkpLgoKQXNpbWlzbW8sIGVsIFJFUE9TSVRPUklPIHBvZHLDoSByZXRpcmFyIGxhIE9CUkEgZW4gc3VwdWVzdG9zIHN1ZmljaWVudGVtZW50ZSBqdXN0aWZpY2Fkb3MgbyBmcmVudGUgYSByZWNsYW1hY2lvbmVzIGRlIHRlcmNlcm9zLgoKPC9wPgo8cD4KCgo8Yj40IC0gRVhFTkNJw5NOIERFIFJFU1BPTlNBQklMSURBRCBERUwgUkVQT1NJVE9SSU88L2I+CgpFTCBBVVRPUiBkZWNsYXJhIGJham8ganVyYW1lbnRvIHF1ZToKCihhKSBsYSBwcmVzZW50ZSBjZXNpw7NuIG5vIGluZnJpbmdlIG5pbmfDum4gZGVyZWNobyBkZSB0ZXJjZXJvcywgeWEgc2VhIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsLCBpbnRlbGVjdHVhbCBvIGN1YWxxdWllciBvdHJvLAoKKGIpIGxhIGluZm9ybWFjacOzbiBwcm9wb3JjaW9uYWRhIHNvYnJlIExBIE9CUkEgZXMgdmVyYXogeSBjb3JyZWN0YS4KQXNpbWlzbW8sIGdhcmFudGl6YSBxdWUgZWwgY29udGVuaWRvIGRlIExBIE9CUkEgbm8gYXRlbnRhIGNvbnRyYSBsb3MgZGVyZWNob3MgYWwgaG9ub3IsIGEgbGEgaW50aW1pZGFkIHkgYSBsYSBpbWFnZW4gZGUgdGVyY2Vyb3MuCgpFTCBBVVRPUiwgY29tbyBnYXJhbnRlIGRlIGxhIGF1dG9yw61hIGRlIExBIE9CUkEgeSBlbiByZWxhY2nDs24gYSBsYSBtaXNtYSwgZGVjbGFyYSBxdWUgRUwgUkVQT1NJVE9SSU8gc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCAoaW5jbHVpZG8gZWwgcmVjbGFtbyBwb3IgcGxhZ2lvKSB5IHF1ZSDDqWwgbWlzbW8gYXN1bWUgbGEgcmVzcG9uc2FiaWxpZGFkIGZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1vIG8gZGVtYW5kYSBwb3IgcGFydGUgZGUgdGVyY2Vyb3MgZGUgbWFuZXJhIGV4Y2x1c2l2YS4gRUwgUkVQT1NJVE9SSU8gc2Ugb2JsaWdhIGEgY29tdW5pY2FyIGFsIEFVVE9SIGFudGUgY3VhbHF1aWVyIHJlY2xhbW8gbyBkZW1hbmRhLgo8L3A+CgoKPGI+NS0gTElDRU5DSUEgRVNUQU5EQVI8L2I+CgpMQSBPQlJBIHNlIHBvbmRyw6EgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvIHBhcmEgcXVlIGhhZ2EgZGUgZWxsYSB1biB1c28ganVzdG8geSByZXNwZXR1b3NvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgc2llbmRvIHJlcXVpc2l0byBjdW1wbGlyIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgbGEgbGljZW5jaWEgZGUgdXNvIHF1ZSBzZWxlY2Npb25lIEVMIEFVVE9SLiAKCkVsIFJFUE9TSVRPUklPIHNlIGNvbXByb21ldGUgYSBleHBvbmVyLCBqdW50byBhIExBIE9CUkEsIGxhIGxpY2VuY2lhIGRlIHVzbyBlbGVnaWRhIHBvciBlbCBBVVRPUiBlbiBlc3RlIGZvcm11bGFyaW8gZGUgY2FyZ2EganVudG8gY29uIHN1IGRlc2NyaXBjacOzbiBhIHBhcnRpciBkZSB1biBlbmxhY2Ugd2ViIHDDumJsaWNvLCB5IG5vIGFzdW1pcsOhIHJlc3BvbnNhYmlsaWRhZCBhbGd1bmEgcG9yIG90cm9zIHVzb3MgZGUgdGVyY2Vyb3Mgbm8gYXV0b3JpemFkb3MgbyBjb250cmFyaW9zIGEgbGEgbGVnaXNsYWNpw7NuIHZpZ2VudGUuCgpBIGNvbnRpbnVhY2nDs24gc2UgZGVzY3JpYmVuIGxhcyBvcGNpb25lcyBkZSBsaWNlbmNpYW1pZW50byBvZnJlY2lkYXMgcG9yIGVsIHJlcG9zaXRvcmlvIChxdWUgZGViZXLDoSBzZWxlY2Npb25hciBtw6FzIGFkZWxhbnRlIGVuIGVzdGUgZm9ybXVsYXJpbyk6Cgo8cD4KPGI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9uczogQXRyaWJ1Y2nDs24gKENDIEJZKTwvYj4KUGVybWl0ZSBhIG90cm9zIGRpc3RyaWJ1aXIsIGFkYXB0YXIsIHJldG9jYXIgeSBjcmVhciBhIHBhcnRpciBkZSB0dSBvYnJhLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSB5IGN1YW5kbyBzZSBvdG9yZ3VlIGNyw6lkaXRvIGEgbGEgY3JlYWNpw7NuIG9yaWdpbmFsLiBUw6lybWlub3MgY29tcGxldG9zIGRlIGxhIGxpY2VuY2lhIGRpc3BvbmlibGVzICBlbjogPGEgaHJlZj0iaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LzQuMC9kZWVkLmVzIj5odHRwczovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnkvNC4wL2RlZWQuZXM8L2E+CjwvcD4KPHA+CjxiPkxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnM6IEF0cmlidWNpw7NuIC0gQ29tcGFydGlyIGlndWFsIChDQyBCWS1TQSk8L2I+ClBlcm1pdGUgYSBvdHJvcyBhZGFwdGFyLCByZWZ1bmRpciwgeSBjcmVhciBhIHBhcnRpciBkZSB0dSBvYnJhLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSB5IGN1YW5kbyBzZSBvdG9yZ3VlIGNyw6lkaXRvIHkgc2UgbGljZW5jaWVuIGxhcyBvYnJhcyBkZXJpdmFkYXMgYmFqbyBjb25kaWNpb25lcyBpZMOpbnRpY2FzIGEgbGEgY3JlYWNpw7NuIG9yaWdpbmFsLiBUw6lybWlub3MgY29tcGxldG9zIGRlIGxhIGxpY2VuY2lhIGRpc3BvbmlibGVzIGVuOiA8YSBocmVmPSJodHRwczovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktc2EvNC4wL2RlZWQuZXMiPmh0dHBzOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1zYS80LjAvZGVlZC5lczwvYT4gCjwvcD4KPHA+Cgo8Yj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zOiBBdHJpYnVjacOzbiAtIE5vIERlcml2YWRhcyAoQ0MgQlktTkQpPC9iPgpQZXJtaXRlIGxhIHJlZGlzdHJpYnVjacOzbiwgY29tZXJjaWFsIG8gbm8gY29tZXJjaWFsLCBzaWVtcHJlIHkgY3VhbmRvIHNlIG90b3JndWUgY3LDqWRpdG8geSBsYSBvYnJhIGNpcmN1bGUgw61udGVncmEgeSBzaW4gY2FtYmlvcy4gVMOpcm1pbm9zIGNvbXBsZXRvcyBkZSBsYSBsaWNlbmNpYSBkaXNwb25pYmxlcyBlbjogPGEgaHJlZj0iaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5kLzQuMC9kZWVkLmVzIj5odHRwczovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmQvNC4wL2RlZWQuZXM8L2E+IAo8L3A+CjxwPgoKPGI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9uczogQXRyaWJ1Y2nDs24gLSBObyBDb21lcmNpYWwgKENDIEJZLU5DKTwvYj4KUGVybWl0ZSBhIG90cm9zIGRpc3RyaWJ1aXIsIGFkYXB0YXIgeSBjcmVhciBhIHBhcnRpciBkZSB0dSBvYnJhLCBkZSBtb2RvIG5vIGNvbWVyY2lhbCB5IG90b3JnYW5kbyBjcsOpZGl0by4gVMOpcm1pbm9zIGNvbXBsZXRvcyBkZSBsYSBsaWNlbmNpYSBkaXNwb25pYmxlcyBlbjogPGEgaHJlZj0iaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLzQuMC9kZWVkLmVzIj5odHRwczovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wL2RlZWQuZXM8L2E+IAo8L3A+CjxwPgoKPGI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9uczogQXRyaWJ1Y2nDs24gLSBObyBDb21lcmNpYWwgLSBDb21wYXJ0aXIgSWd1YWwgKENDIEJZLU5DLVNBKQo8L2I+ClBlcm1pdGUgYSBvdHJvcyBkaXN0cmlidWlyLCBhZGFwdGFyLCByZXRvY2FyIHkgY3JlYXIgYSBwYXJ0aXIgZGUgdHUgb2JyYSBkZSBtb2RvIG5vIGNvbWVyY2lhbCwgc2llbXByZSB5IGN1YW5kbyBsZSBvdG9yZ3VlIGNyw6lkaXRvIHkgc2UgbGljZW5jaWVuIGxhcyBvYnJhcyBkZXJpdmFkYXMgYmFqbyBjb25kaWNpb25lcyBpZMOpbnRpY2FzLiBUw6lybWlub3MgY29tcGxldG9zIGRlIGxhIGxpY2VuY2lhIGRpc3BvbmlibGVzIGVuOiA8YSBocmVmPSJodHRwczovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMtc2EvNC4wL2RlZWQuZXMiPmh0dHBzOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy1zYS80LjAvZGVlZC5lczwvYT4gCjwvcD4KPHA+Cgo8Yj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zOiBBdHJpYnVjacOzbiAtIE5vIENvbWVyY2lhbCAtIE5vIERlcml2YWRhcyAoQ0MgQlktTkMtTkQpPC9iPgpQZXJtaXRlIGEgb3Ryb3MgZGVzY2FyZ2FyIHR1cyBvYnJhcyB5IGNvbXBhcnRpcmxhcyBjb24gb3Ryb3Mgc2llbXByZSB5IGN1YW5kbyBzZSBvdG9yZ3VlIGNyw6lkaXRvLCBwZXJvIG5vIHBlcm1pdGVuIGNhbWJpYXJsYXMgZGUgZm9ybWEgYWxndW5hIG5pIHVzYXJsYXMgY29tZXJjaWFsbWVudGUuIFTDqXJtaW5vcyBjb21wbGV0b3MgZGUgbGEgbGljZW5jaWEgZGlzcG9uaWJsZXMgZW46IDxhIGhyZWY9Imh0dHBzOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy1uZC80LjAvZGVlZC5lcyI+aHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC9kZWVkLmVzPC9hPgoKPC9wPgoKGobiernohttps://cfe.edu.uy/https://repositorio.cfe.edu.uy/oai/requestmariavaleriapaulo@gmail.comUruguayopendoar:101592024-07-25T16:07:47.088456RIdAA-CFE - ANEP. Consejo de Formación en Educaciónfalse
spellingShingle De tareas estándar a tareas desafiantes: diseño de actividades para la enseñanza del álgebra lineal
González, Silvina
Formación de docentes
geometría
Enseñanza de las matemáticas
status_str acceptedVersion
title De tareas estándar a tareas desafiantes: diseño de actividades para la enseñanza del álgebra lineal
title_full De tareas estándar a tareas desafiantes: diseño de actividades para la enseñanza del álgebra lineal
title_fullStr De tareas estándar a tareas desafiantes: diseño de actividades para la enseñanza del álgebra lineal
title_full_unstemmed De tareas estándar a tareas desafiantes: diseño de actividades para la enseñanza del álgebra lineal
title_short De tareas estándar a tareas desafiantes: diseño de actividades para la enseñanza del álgebra lineal
title_sort De tareas estándar a tareas desafiantes: diseño de actividades para la enseñanza del álgebra lineal
topic Formación de docentes
geometría
Enseñanza de las matemáticas
url http://repositorio.cfe.edu.uy/handle/123456789/1358