The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good

Lepri, Bruno - Staiano, Jacopo - Sangokoya, David - Letouzé, Emmanuel Francis - Oliver, Nuria

Resumen:

The unprecedented availability of large-scale human behavioraldata is profoundly changing the world we live in. Researchers, companies,governments, financial institutions, non-governmental organizations and alsocitizen groups are actively experimenting, innovating and adapting algorith-mic decision-making tools to understand global patterns of human behaviorand provide decision support to tackle problems of societal importance. In thischapter, we focus our attention on social good decision-making algorithms,that is algorithms strongly influencing decision-making and resource opti-mization of public goods, such as public health, safety, access to finance andfair employment. Through an analysis of specific use cases and approaches,we highlight both the positive opportunities that are created through data-driven algorithmic decision-making, and the potential negative consequencesthat practitioners should be aware of and address in order to truly realizethe potential of this emergent field. We elaborate on the need for these algo-rithms to provide transparency and accountability, preserve privacy and betested and evaluated in context, by means of living lab approaches involvingcitizens. Finally, we turn to the requirements which would make it possible toleverage the predictive power of data-driven human behavior analysis whileensuring transparency, accountability, and civic participation.


Detalles Bibliográficos
2016
Big Data
Algorithms
Transparency
Accountability
Ciencias Sociales
Ciencias de la Educación
Análisis de datos
Procesamiento de datos
Ética
Tecnología
Inglés
Fundación Ceibal
Ceibal en REDI
https://hdl.handle.net/20.500.12381/316
Acceso abierto
Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)
_version_ 1808165427760594944
author Lepri, Bruno
author2 Staiano, Jacopo
Sangokoya, David
Letouzé, Emmanuel Francis
Oliver, Nuria
author2_role author
author
author
author
author_facet Lepri, Bruno
Staiano, Jacopo
Sangokoya, David
Letouzé, Emmanuel Francis
Oliver, Nuria
author_role author
bitstream.checksum.fl_str_mv 04900bda284772ac092f06dccc513e67
f88920045464e5f68ef292279163d221
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
bitstream.url.fl_str_mv https://redi.anii.org.uy/jspui/bitstream/20.500.12381/316/2/license.txt
https://redi.anii.org.uy/jspui/bitstream/20.500.12381/316/1/TyrannyOfData2016.pdf
collection Ceibal en REDI
dc.creator.none.fl_str_mv Lepri, Bruno
Staiano, Jacopo
Sangokoya, David
Letouzé, Emmanuel Francis
Oliver, Nuria
dc.date.accessioned.none.fl_str_mv 2018-11-26T14:00:59Z
2020-10-28T19:25:33Z
2021-09-07T18:01:25Z
dc.date.available.none.fl_str_mv 2018-11-26T14:00:59Z
2020-10-28T19:25:33Z
2021-09-07T18:01:25Z
dc.date.issued.none.fl_str_mv 2016-12-02
dc.description.abstract.none.fl_txt_mv The unprecedented availability of large-scale human behavioraldata is profoundly changing the world we live in. Researchers, companies,governments, financial institutions, non-governmental organizations and alsocitizen groups are actively experimenting, innovating and adapting algorith-mic decision-making tools to understand global patterns of human behaviorand provide decision support to tackle problems of societal importance. In thischapter, we focus our attention on social good decision-making algorithms,that is algorithms strongly influencing decision-making and resource opti-mization of public goods, such as public health, safety, access to finance andfair employment. Through an analysis of specific use cases and approaches,we highlight both the positive opportunities that are created through data-driven algorithmic decision-making, and the potential negative consequencesthat practitioners should be aware of and address in order to truly realizethe potential of this emergent field. We elaborate on the need for these algo-rithms to provide transparency and accountability, preserve privacy and betested and evaluated in context, by means of living lab approaches involvingcitizens. Finally, we turn to the requirements which would make it possible toleverage the predictive power of data-driven human behavior analysis whileensuring transparency, accountability, and civic participation.
dc.format.extent.es.fl_str_mv pp.3-24
dc.identifier.citation.es.fl_str_mv Lepri, B., Staiano, J., Sangokoya, D., Letouzé, E., Oliver, N. (2017). The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good. 3-24. 10.1007/978-3-319-54024-5_1. Website https://www.researchgate.net/publication/317139233_The_Tyranny_of_Data_The_Bright_an d_Dark_Sides_of_Data-Driven_Decision-Making_for_Social_Good (accessed November 26th, 2018).
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-319-54024-5_1
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12381/316
dc.language.iso.none.fl_str_mv eng
dc.publisher.es.fl_str_mv Research Gate
dc.rights.es.fl_str_mv Acceso abierto
dc.rights.license.none.fl_str_mv Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:Ceibal en REDI
instname:Fundación Ceibal
instacron:Fundación Ceibal
dc.subject.anii.none.fl_str_mv Ciencias Sociales
Ciencias de la Educación
dc.subject.ceibal.es.fl_str_mv Análisis de datos
Procesamiento de datos
Ética
Tecnología
dc.subject.es.fl_str_mv Big Data
Algorithms
Transparency
Accountability
dc.title.none.fl_str_mv The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good
dc.type.es.fl_str_mv Artículo
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es.fl_str_mv Publicado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description The unprecedented availability of large-scale human behavioraldata is profoundly changing the world we live in. Researchers, companies,governments, financial institutions, non-governmental organizations and alsocitizen groups are actively experimenting, innovating and adapting algorith-mic decision-making tools to understand global patterns of human behaviorand provide decision support to tackle problems of societal importance. In thischapter, we focus our attention on social good decision-making algorithms,that is algorithms strongly influencing decision-making and resource opti-mization of public goods, such as public health, safety, access to finance andfair employment. Through an analysis of specific use cases and approaches,we highlight both the positive opportunities that are created through data-driven algorithmic decision-making, and the potential negative consequencesthat practitioners should be aware of and address in order to truly realizethe potential of this emergent field. We elaborate on the need for these algo-rithms to provide transparency and accountability, preserve privacy and betested and evaluated in context, by means of living lab approaches involvingcitizens. Finally, we turn to the requirements which would make it possible toleverage the predictive power of data-driven human behavior analysis whileensuring transparency, accountability, and civic participation.
eu_rights_str_mv openAccess
format article
id CEIBAL_4dc900f6087f7468f53a5dc7c255d4e7
identifier_str_mv Lepri, B., Staiano, J., Sangokoya, D., Letouzé, E., Oliver, N. (2017). The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good. 3-24. 10.1007/978-3-319-54024-5_1. Website https://www.researchgate.net/publication/317139233_The_Tyranny_of_Data_The_Bright_an d_Dark_Sides_of_Data-Driven_Decision-Making_for_Social_Good (accessed November 26th, 2018).
10.1007/978-3-319-54024-5_1
instacron_str Fundación Ceibal
institution Fundación Ceibal
instname_str Fundación Ceibal
language eng
network_acronym_str CEIBAL
network_name_str Ceibal en REDI
oai_identifier_str oai:redi.anii.org.uy:20.500.12381/316
publishDate 2016
reponame_str Ceibal en REDI
repository.mail.fl_str_mv mamunoz@fundacionceibal.edu.uy
repository.name.fl_str_mv Ceibal en REDI - Fundación Ceibal
repository_id_str 9421_1
rights_invalid_str_mv Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)
Acceso abierto
spelling Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)Acceso abiertoinfo:eu-repo/semantics/openAccess2018-11-26T14:00:59Z2020-10-28T19:25:33Z2021-09-07T18:01:25Z2018-11-26T14:00:59Z2020-10-28T19:25:33Z2021-09-07T18:01:25Z2016-12-02Lepri, B., Staiano, J., Sangokoya, D., Letouzé, E., Oliver, N. (2017). The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good. 3-24. 10.1007/978-3-319-54024-5_1. Website https://www.researchgate.net/publication/317139233_The_Tyranny_of_Data_The_Bright_an d_Dark_Sides_of_Data-Driven_Decision-Making_for_Social_Good (accessed November 26th, 2018).https://hdl.handle.net/20.500.12381/31610.1007/978-3-319-54024-5_1The unprecedented availability of large-scale human behavioraldata is profoundly changing the world we live in. Researchers, companies,governments, financial institutions, non-governmental organizations and alsocitizen groups are actively experimenting, innovating and adapting algorith-mic decision-making tools to understand global patterns of human behaviorand provide decision support to tackle problems of societal importance. In thischapter, we focus our attention on social good decision-making algorithms,that is algorithms strongly influencing decision-making and resource opti-mization of public goods, such as public health, safety, access to finance andfair employment. Through an analysis of specific use cases and approaches,we highlight both the positive opportunities that are created through data-driven algorithmic decision-making, and the potential negative consequencesthat practitioners should be aware of and address in order to truly realizethe potential of this emergent field. We elaborate on the need for these algo-rithms to provide transparency and accountability, preserve privacy and betested and evaluated in context, by means of living lab approaches involvingcitizens. Finally, we turn to the requirements which would make it possible toleverage the predictive power of data-driven human behavior analysis whileensuring transparency, accountability, and civic participation.pp.3-24engResearch GateBig DataAlgorithmsTransparencyAccountabilityCiencias SocialesCiencias de la EducaciónAnálisis de datosProcesamiento de datosÉticaTecnologíaThe Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social GoodArtículoPublicadoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleRecursos y plataformasOtroreponame:Ceibal en REDIinstname:Fundación Ceibalinstacron:Fundación CeibalLepri, BrunoStaiano, JacopoSangokoya, DavidLetouzé, Emmanuel FrancisOliver, NuriaLICENSElicense.txttext/plain4611https://redi.anii.org.uy/jspui/bitstream/20.500.12381/316/2/license.txt04900bda284772ac092f06dccc513e67MD52ORIGINALTyrannyOfData2016.pdfapplication/pdf504618https://redi.anii.org.uy/jspui/bitstream/20.500.12381/316/1/TyrannyOfData2016.pdff88920045464e5f68ef292279163d221MD5120.500.12381/3162024-04-15 11:59:57.655oai:redi.anii.org.uy:20.500.12381/316QWNlcHRhbmRvIGxhIGNlc2nDs24gZGUgZGVyZWNob3MgZWwgdXN1YXJpbyBERUNMQVJBIHF1ZSBvc3RlbnRhIGxhIGNvbmRpY2nDs24gZGUgYXV0b3IgZW4gZWwgc2VudGlkbyBxdWUgb3RvcmdhIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlIHNvYnJlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBkZSBsYSBvYnJhIG9yaWdpbmFsIHF1ZSBlc3TDoSBlbnZpYW5kbyAo4oCcbGEgb2JyYeKAnSkuIEVuIGNhc28gZGUgc2VyIGNvdGl0dWxhciwgZWwgYXV0b3IgZGVjbGFyYSBxdWUgY3VlbnRhIGNvbiBlbCBjb25zZW50aW1pZW50byBkZSBsb3MgcmVzdGFudGVzIHRpdHVsYXJlcyBwYXJhIGhhY2VyIGxhIHByZXNlbnRlIGNlc2nDs24uIEVuIGNhc28gZGUgcHJldmlhIGNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlIGV4cGxvdGFjacOzbiBzb2JyZSBsYSBvYnJhIGEgdGVyY2Vyb3MsIGVsIGF1dG9yIGRlY2xhcmEgcXVlIHRpZW5lIGxhIGF1dG9yaXphY2nDs24gZXhwcmVzYSBkZSBkaWNob3MgdGl0dWxhcmVzIGRlIGRlcmVjaG9zIGEgbG9zIGZpbmVzIGRlIGVzdGEgY2VzacOzbiwgbyBiaWVuIHF1ZSBoYSBjb25zZXJ2YWRvIGxhIGZhY3VsdGFkIGRlIGNlZGVyIGVzdG9zIGRlcmVjaG9zIGVuIGxhIGZvcm1hIHByZXZpc3RhIGVuIGxhIHByZXNlbnRlIGNlc2nDs24uDQoNCkNvbiBlbCBmaW4gZGUgZGFyIGxhIG3DoXhpbWEgZGlmdXNpw7NuIGEgbGEgb2JyYSBhIHRyYXbDqXMgZGUgUkVESSwgZWwgQVVUT1IgQ0VERSBhIEFOSUksIGRlIGZvcm1hIGdyYXR1aXRhIHkgTk8gRVhDTFVTSVZBLCBjb24gY2Fyw6FjdGVyIGlycmV2b2NhYmxlIGUgaWxpbWl0YWRvIGVuIGVsIHRpZW1wbyB5IGNvbiDDoW1iaXRvIG11bmRpYWwsIGxvcyBkZXJlY2hvcyBkZSByZXByb2R1Y2Npw7NuLCBkZSBkaXN0cmlidWNpw7NuLCBkZSBjb211bmljYWNpw7NuIHDDumJsaWNhLCBpbmNsdWlkbyBlbCBkZXJlY2hvIGRlIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbGVjdHLDs25pY2EsIHBhcmEgcXVlIHB1ZWRhIHNlciB1dGlsaXphZGEgZGUgZm9ybWEgbGlicmUgeSBncmF0dWl0YSBwb3IgdG9kb3MgbG9zIHF1ZSBsbyBkZXNlZW4uDQoNCkxhIGNlc2nDs24gc2UgcmVhbGl6YSBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzOg0KDQpMYSB0aXR1bGFyaWRhZCBkZSBsYSBvYnJhIHNlZ3VpcsOhIGNvcnJlc3BvbmRpZW5kbyBhbCBBdXRvciB5IGxhIHByZXNlbnRlIGNlc2nDs24gZGUgZGVyZWNob3MgcGVybWl0aXLDoSBhIFJFREk6DQoNCihhKVRyYW5zZm9ybWFyIGxhIG9icmEgZW4gbGEgbWVkaWRhIGVuIHF1ZSBzZWEgbmVjZXNhcmlvIHBhcmEgYWRhcHRhcmxhIGEgY3VhbHF1aWVyIHRlY25vbG9nw61hIHN1c2NlcHRpYmxlIGRlIGluY29ycG9yYWNpw7NuIGEgSW50ZXJuZXQ7IHJlYWxpemFyIGxhcyBhZGFwdGFjaW9uZXMgbmVjZXNhcmlhcyBwYXJhIGhhY2VyIHBvc2libGUgc3UgYWNjZXNvIHkgdmlzdWFsaXphY2nDs24gcGVybWFuZW50ZSwgYcO6biBwb3IgcGFydGUgZGUgcGVyc29uYXMgY29uIGRpc2NhcGFjaWRhZCwgcmVhbGl6YXIgbGFzIG1pZ3JhY2lvbmVzIGRlIGZvcm1hdG9zIHBhcmEgYXNlZ3VyYXIgbGEgcHJlc2VydmFjacOzbiBhIGxhcmdvIHBsYXpvLCBpbmNvcnBvcmFyIGxvcyBtZXRhZGF0b3MgbmVjZXNhcmlvcyBwYXJhIHJlYWxpemFyIGVsIHJlZ2lzdHJvIGRlIGxhIG9icmEsIGUgaW5jb3Jwb3JhciB0YW1iacOpbiDigJxtYXJjYXMgZGUgYWd1YeKAnSBvIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgZGUgc2VndXJpZGFkIG8gZGUgcHJvdGVjY2nDs24gbyBkZSBpZGVudGlmaWNhY2nDs24gZGUgcHJvY2VkZW5jaWEuIEVuIG5pbmfDum4gY2FzbyBkaWNoYXMgbW9kaWZpY2FjaW9uZXMgaW1wbGljYXLDoW4gYWR1bHRlcmFjaW9uZXMgZW4gZWwgY29udGVuaWRvIGRlIGxhIG9icmEuDQoNCihiKSBSZXByb2R1Y2lyIGxhIG9icmEgZW4gdW4gbWVkaW8gZGlnaXRhbCBwYXJhIHN1IGluY29ycG9yYWNpw7NuIGEgc2lzdGVtYXMgZGUgYsO6c3F1ZWRhIHkgcmVjdXBlcmFjacOzbiwgaW5jbHV5ZW5kbyBlbCBkZXJlY2hvIGEgcmVwcm9kdWNpciB5IGFsbWFjZW5hcmxhIGVuIHNlcnZpZG9yZXMgdSBvdHJvcyBtZWRpb3MgZGlnaXRhbGVzIGEgbG9zIGVmZWN0b3MgZGUgc2VndXJpZGFkIHkgcHJlc2VydmFjacOzbi4NCg0KKGMpIFBlcm1pdGlyIGEgbG9zIHVzdWFyaW9zIGxhIGRlc2NhcmdhIGRlIGNvcGlhcyBlbGVjdHLDs25pY2FzIGRlIGxhIG9icmEgZW4gdW4gc29wb3J0ZSBkaWdpdGFsLg0KDQooZCkgUmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIGFjY2VzaWJsZSBkZSBtb2RvIGxpYnJlIHkgZ3JhdHVpdG8gYSB0cmF2w6lzIGRlIEludGVybmV0Lg0KDQpFbiB2aXJ0dWQgZGVsIGNhcsOhY3RlciBubyBleGNsdXNpdm8gZGUgbGEgY2VzacOzbiwgZWwgQXV0b3IgY29uc2VydmEgdG9kb3MgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEsIHkgcG9kcsOhIHBvbmVybGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvIGVuIGVzdGEgeSBlbiBwb3N0ZXJpb3JlcyB2ZXJzaW9uZXMsIGEgdHJhdsOpcyBkZSBsb3MgbWVkaW9zIHF1ZSBlc3RpbWUgb3BvcnR1bm9zLg0KDQpFbCBBdXRvciBkZWNsYXJhIGJham8ganVyYW1lbnRvIHF1ZSBsYSBwcmVzZW50ZSBjZXNpw7NuIG5vIGluZnJpbmdlIG5pbmfDum4gZGVyZWNobyBkZSB0ZXJjZXJvcywgeWEgc2VhbiBkZSBwcm9waWVkYWQgaW5kdXN0cmlhbCwgaW50ZWxlY3R1YWwgbyBjdWFscXVpZXIgb3RybyB5IGdhcmFudGl6YSBxdWUgZWwgY29udGVuaWRvIGRlIGxhIG9icmEgbm8gYXRlbnRhIGNvbnRyYSBsb3MgZGVyZWNob3MgYWwgaG9ub3IsIGEgbGEgaW50aW1pZGFkIHkgYSBsYSBpbWFnZW4gZGUgdGVyY2Vyb3MsIG5pIGVzIGRpc2NyaW1pbmF0b3Jpby4gUkVESSBlc3RhcsOhIGV4ZW50byBkZSBsYSByZXZpc2nDs24gZGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhLCBxdWUgZW4gdG9kbyBjYXNvIHBlcm1hbmVjZXLDoSBiYWpvIGxhIHJlc3BvbnNhYmlsaWRhZCBleGNsdXNpdmEgZGVsIEF1dG9yLg0KDQpMYSBvYnJhIHNlIHBvbmRyw6EgYSBkaXNwb3NpY2nDs24gZGUgbG9zIHVzdWFyaW9zIHBhcmEgcXVlIGhhZ2FuIGRlIGVsbGEgdW4gdXNvIGp1c3RvIHkgcmVzcGV0dW9zbyBkZSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIHkgY29uIGZpbmVzIGRlIGVzdHVkaW8sIGludmVzdGlnYWNpw7NuLCBvIGN1YWxxdWllciBvdHJvIGZpbiBsw61jaXRvLiBFbCBtZW5jaW9uYWRvIHVzbywgbcOhcyBhbGzDoSBkZSBsYSBjb3BpYSBwcml2YWRhLCByZXF1ZXJpcsOhIHF1ZSBzZSBjaXRlIGxhIGZ1ZW50ZSB5IHNlIHJlY29ub3pjYSBsYSBhdXRvcsOtYS4gQSB0YWxlcyBmaW5lcyBlbCBBdXRvciBhY2VwdGEgZWwgdXNvIGRlIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zIHkgRUxJR0UgdW5hIGRlIGVzdGFzIGxpY2VuY2lhcyBlc3RhbmRhcml6YWRhcyBhIGxvcyBmaW5lcyBkZSBjb211bmljYXIgc3Ugb2JyYS4NCg0KRWwgQXV0b3IsIGNvbW8gZ2FyYW50ZSBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhIHkgZW4gcmVsYWNpw7NuIGEgbGEgbWlzbWEsIGRlY2xhcmEgcXVlIGxhIEFOSUkgc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSDDqXN0YSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCwgeSBxdWUgw6lsIG1pc21vIGFzdW1lIGxhIHJlc3BvbnNhYmlsaWRhZCBmcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtbyBvIGRlbWFuZGEgcG9yIHBhcnRlIGRlIHRlcmNlcm9zLiBMQSBBTklJIGVzdGFyw6EgZXhlbnRhIGRlIGVqZXJjaXRhciBhY2Npb25lcyBsZWdhbGVzIGVuIG5vbWJyZSBkZWwgQXV0b3IgZW4gZWwgc3VwdWVzdG8gZGUgaW5mcmFjY2lvbmVzIGEgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGRlcml2YWRvcyBkZWwgZGVww7NzaXRvIHkgYXJjaGl2byBkZSBsYSBvYnJhLg0KDQpBTklJIG5vdGlmaWNhcsOhIGFsIEF1dG9yIGRlIGN1YWxxdWllciByZWNsYW1hY2nDs24gcXVlIHJlY2liYSBkZSB0ZXJjZXJvcyBlbiByZWxhY2nDs24gY29uIGxhIG9icmEgeSwgZW4gcGFydGljdWxhciwgZGUgcmVjbGFtYWNpb25lcyByZWxhdGl2YXMgYSBsb3MgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIHNvYnJlIGVsbGEuDQoNCkVsIEF1dG9yIHBvZHLDoSBzb2xpY2l0YXIgZWwgcmV0aXJvIG8gbGEgaW52aXNpYmlsaXphY2nDs24gZGUgbGEgb2JyYSBkZSBSRURJIHPDs2xvIHBvciBjYXVzYSBqdXN0aWZpY2FkYS4gQSB0YWwgZmluIGRlYmVyw6EgbWFuaWZlc3RhciBzdSB2b2x1bnRhZCBlbiBmb3JtYSBmZWhhY2llbnRlIHkgYWNyZWRpdGFyIGRlYmlkYW1lbnRlIGxhIGNhdXNhIGp1c3RpZmljYWRhLiBBc2ltaXNtbyBBTklJIHBvZHLDoSByZXRpcmFyIG8gaW52aXNpYmlsaXphciBsYSBvYnJhIGRlIFJFREksIHByZXZpYSBub3RpZmljYWNpw7NuIGFsIEF1dG9yLCBlbiBzdXB1ZXN0b3Mgc3VmaWNpZW50ZW1lbnRlIGp1c3RpZmljYWRvcywgbyBlbiBjYXNvIGRlIHJlY2xhbWFjaW9uZXMgZGUgdGVyY2Vyb3MuGobiernohttps://fundacionceibal.edu.uy/https://redi.anii.org.uy/oai/requestmamunoz@fundacionceibal.edu.uyUruguayopendoar:9421_12024-04-15T14:59:57Ceibal en REDI - Fundación Ceibalfalse
spellingShingle The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good
Lepri, Bruno
Big Data
Algorithms
Transparency
Accountability
Ciencias Sociales
Ciencias de la Educación
Análisis de datos
Procesamiento de datos
Ética
Tecnología
status_str publishedVersion
title The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good
title_full The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good
title_fullStr The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good
title_full_unstemmed The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good
title_short The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good
title_sort The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good
topic Big Data
Algorithms
Transparency
Accountability
Ciencias Sociales
Ciencias de la Educación
Análisis de datos
Procesamiento de datos
Ética
Tecnología
url https://hdl.handle.net/20.500.12381/316