The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good
Resumen:
The unprecedented availability of large-scale human behavioraldata is profoundly changing the world we live in. Researchers, companies,governments, financial institutions, non-governmental organizations and alsocitizen groups are actively experimenting, innovating and adapting algorith-mic decision-making tools to understand global patterns of human behaviorand provide decision support to tackle problems of societal importance. In thischapter, we focus our attention on social good decision-making algorithms,that is algorithms strongly influencing decision-making and resource opti-mization of public goods, such as public health, safety, access to finance andfair employment. Through an analysis of specific use cases and approaches,we highlight both the positive opportunities that are created through data-driven algorithmic decision-making, and the potential negative consequencesthat practitioners should be aware of and address in order to truly realizethe potential of this emergent field. We elaborate on the need for these algo-rithms to provide transparency and accountability, preserve privacy and betested and evaluated in context, by means of living lab approaches involvingcitizens. Finally, we turn to the requirements which would make it possible toleverage the predictive power of data-driven human behavior analysis whileensuring transparency, accountability, and civic participation.
2016 | |
Big Data Algorithms Transparency Accountability Ciencias Sociales Ciencias de la Educación Análisis de datos Procesamiento de datos Ética Tecnología |
|
Inglés | |
Fundación Ceibal | |
Ceibal en REDI | |
https://hdl.handle.net/20.500.12381/316 | |
Acceso abierto | |
Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND) |
_version_ | 1808165427760594944 |
---|---|
author | Lepri, Bruno |
author2 | Staiano, Jacopo Sangokoya, David Letouzé, Emmanuel Francis Oliver, Nuria |
author2_role | author author author author |
author_facet | Lepri, Bruno Staiano, Jacopo Sangokoya, David Letouzé, Emmanuel Francis Oliver, Nuria |
author_role | author |
bitstream.checksum.fl_str_mv | 04900bda284772ac092f06dccc513e67 f88920045464e5f68ef292279163d221 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 |
bitstream.url.fl_str_mv | https://redi.anii.org.uy/jspui/bitstream/20.500.12381/316/2/license.txt https://redi.anii.org.uy/jspui/bitstream/20.500.12381/316/1/TyrannyOfData2016.pdf |
collection | Ceibal en REDI |
dc.creator.none.fl_str_mv | Lepri, Bruno Staiano, Jacopo Sangokoya, David Letouzé, Emmanuel Francis Oliver, Nuria |
dc.date.accessioned.none.fl_str_mv | 2018-11-26T14:00:59Z 2020-10-28T19:25:33Z 2021-09-07T18:01:25Z |
dc.date.available.none.fl_str_mv | 2018-11-26T14:00:59Z 2020-10-28T19:25:33Z 2021-09-07T18:01:25Z |
dc.date.issued.none.fl_str_mv | 2016-12-02 |
dc.description.abstract.none.fl_txt_mv | The unprecedented availability of large-scale human behavioraldata is profoundly changing the world we live in. Researchers, companies,governments, financial institutions, non-governmental organizations and alsocitizen groups are actively experimenting, innovating and adapting algorith-mic decision-making tools to understand global patterns of human behaviorand provide decision support to tackle problems of societal importance. In thischapter, we focus our attention on social good decision-making algorithms,that is algorithms strongly influencing decision-making and resource opti-mization of public goods, such as public health, safety, access to finance andfair employment. Through an analysis of specific use cases and approaches,we highlight both the positive opportunities that are created through data-driven algorithmic decision-making, and the potential negative consequencesthat practitioners should be aware of and address in order to truly realizethe potential of this emergent field. We elaborate on the need for these algo-rithms to provide transparency and accountability, preserve privacy and betested and evaluated in context, by means of living lab approaches involvingcitizens. Finally, we turn to the requirements which would make it possible toleverage the predictive power of data-driven human behavior analysis whileensuring transparency, accountability, and civic participation. |
dc.format.extent.es.fl_str_mv | pp.3-24 |
dc.identifier.citation.es.fl_str_mv | Lepri, B., Staiano, J., Sangokoya, D., Letouzé, E., Oliver, N. (2017). The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good. 3-24. 10.1007/978-3-319-54024-5_1. Website https://www.researchgate.net/publication/317139233_The_Tyranny_of_Data_The_Bright_an d_Dark_Sides_of_Data-Driven_Decision-Making_for_Social_Good (accessed November 26th, 2018). |
dc.identifier.doi.none.fl_str_mv | 10.1007/978-3-319-54024-5_1 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12381/316 |
dc.language.iso.none.fl_str_mv | eng |
dc.publisher.es.fl_str_mv | Research Gate |
dc.rights.es.fl_str_mv | Acceso abierto |
dc.rights.license.none.fl_str_mv | Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:Ceibal en REDI instname:Fundación Ceibal instacron:Fundación Ceibal |
dc.subject.anii.none.fl_str_mv | Ciencias Sociales Ciencias de la Educación |
dc.subject.ceibal.es.fl_str_mv | Análisis de datos Procesamiento de datos Ética Tecnología |
dc.subject.es.fl_str_mv | Big Data Algorithms Transparency Accountability |
dc.title.none.fl_str_mv | The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good |
dc.type.es.fl_str_mv | Artículo |
dc.type.none.fl_str_mv | info:eu-repo/semantics/article |
dc.type.version.es.fl_str_mv | Publicado |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | The unprecedented availability of large-scale human behavioraldata is profoundly changing the world we live in. Researchers, companies,governments, financial institutions, non-governmental organizations and alsocitizen groups are actively experimenting, innovating and adapting algorith-mic decision-making tools to understand global patterns of human behaviorand provide decision support to tackle problems of societal importance. In thischapter, we focus our attention on social good decision-making algorithms,that is algorithms strongly influencing decision-making and resource opti-mization of public goods, such as public health, safety, access to finance andfair employment. Through an analysis of specific use cases and approaches,we highlight both the positive opportunities that are created through data-driven algorithmic decision-making, and the potential negative consequencesthat practitioners should be aware of and address in order to truly realizethe potential of this emergent field. We elaborate on the need for these algo-rithms to provide transparency and accountability, preserve privacy and betested and evaluated in context, by means of living lab approaches involvingcitizens. Finally, we turn to the requirements which would make it possible toleverage the predictive power of data-driven human behavior analysis whileensuring transparency, accountability, and civic participation. |
eu_rights_str_mv | openAccess |
format | article |
id | CEIBAL_4dc900f6087f7468f53a5dc7c255d4e7 |
identifier_str_mv | Lepri, B., Staiano, J., Sangokoya, D., Letouzé, E., Oliver, N. (2017). The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good. 3-24. 10.1007/978-3-319-54024-5_1. Website https://www.researchgate.net/publication/317139233_The_Tyranny_of_Data_The_Bright_an d_Dark_Sides_of_Data-Driven_Decision-Making_for_Social_Good (accessed November 26th, 2018). 10.1007/978-3-319-54024-5_1 |
instacron_str | Fundación Ceibal |
institution | Fundación Ceibal |
instname_str | Fundación Ceibal |
language | eng |
network_acronym_str | CEIBAL |
network_name_str | Ceibal en REDI |
oai_identifier_str | oai:redi.anii.org.uy:20.500.12381/316 |
publishDate | 2016 |
reponame_str | Ceibal en REDI |
repository.mail.fl_str_mv | mamunoz@fundacionceibal.edu.uy |
repository.name.fl_str_mv | Ceibal en REDI - Fundación Ceibal |
repository_id_str | 9421_1 |
rights_invalid_str_mv | Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND) Acceso abierto |
spelling | Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)Acceso abiertoinfo:eu-repo/semantics/openAccess2018-11-26T14:00:59Z2020-10-28T19:25:33Z2021-09-07T18:01:25Z2018-11-26T14:00:59Z2020-10-28T19:25:33Z2021-09-07T18:01:25Z2016-12-02Lepri, B., Staiano, J., Sangokoya, D., Letouzé, E., Oliver, N. (2017). The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good. 3-24. 10.1007/978-3-319-54024-5_1. Website https://www.researchgate.net/publication/317139233_The_Tyranny_of_Data_The_Bright_an d_Dark_Sides_of_Data-Driven_Decision-Making_for_Social_Good (accessed November 26th, 2018).https://hdl.handle.net/20.500.12381/31610.1007/978-3-319-54024-5_1The unprecedented availability of large-scale human behavioraldata is profoundly changing the world we live in. Researchers, companies,governments, financial institutions, non-governmental organizations and alsocitizen groups are actively experimenting, innovating and adapting algorith-mic decision-making tools to understand global patterns of human behaviorand provide decision support to tackle problems of societal importance. In thischapter, we focus our attention on social good decision-making algorithms,that is algorithms strongly influencing decision-making and resource opti-mization of public goods, such as public health, safety, access to finance andfair employment. Through an analysis of specific use cases and approaches,we highlight both the positive opportunities that are created through data-driven algorithmic decision-making, and the potential negative consequencesthat practitioners should be aware of and address in order to truly realizethe potential of this emergent field. We elaborate on the need for these algo-rithms to provide transparency and accountability, preserve privacy and betested and evaluated in context, by means of living lab approaches involvingcitizens. Finally, we turn to the requirements which would make it possible toleverage the predictive power of data-driven human behavior analysis whileensuring transparency, accountability, and civic participation.pp.3-24engResearch GateBig DataAlgorithmsTransparencyAccountabilityCiencias SocialesCiencias de la EducaciónAnálisis de datosProcesamiento de datosÉticaTecnologíaThe Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social GoodArtículoPublicadoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleRecursos y plataformasOtroreponame:Ceibal en REDIinstname:Fundación Ceibalinstacron:Fundación CeibalLepri, BrunoStaiano, JacopoSangokoya, DavidLetouzé, Emmanuel FrancisOliver, NuriaLICENSElicense.txttext/plain4611https://redi.anii.org.uy/jspui/bitstream/20.500.12381/316/2/license.txt04900bda284772ac092f06dccc513e67MD52ORIGINALTyrannyOfData2016.pdfapplication/pdf504618https://redi.anii.org.uy/jspui/bitstream/20.500.12381/316/1/TyrannyOfData2016.pdff88920045464e5f68ef292279163d221MD5120.500.12381/3162024-04-15 11:59:57.655oai:redi.anii.org.uy:20.500.12381/316QWNlcHRhbmRvIGxhIGNlc2nDs24gZGUgZGVyZWNob3MgZWwgdXN1YXJpbyBERUNMQVJBIHF1ZSBvc3RlbnRhIGxhIGNvbmRpY2nDs24gZGUgYXV0b3IgZW4gZWwgc2VudGlkbyBxdWUgb3RvcmdhIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlIHNvYnJlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBkZSBsYSBvYnJhIG9yaWdpbmFsIHF1ZSBlc3TDoSBlbnZpYW5kbyAo4oCcbGEgb2JyYeKAnSkuIEVuIGNhc28gZGUgc2VyIGNvdGl0dWxhciwgZWwgYXV0b3IgZGVjbGFyYSBxdWUgY3VlbnRhIGNvbiBlbCBjb25zZW50aW1pZW50byBkZSBsb3MgcmVzdGFudGVzIHRpdHVsYXJlcyBwYXJhIGhhY2VyIGxhIHByZXNlbnRlIGNlc2nDs24uIEVuIGNhc28gZGUgcHJldmlhIGNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlIGV4cGxvdGFjacOzbiBzb2JyZSBsYSBvYnJhIGEgdGVyY2Vyb3MsIGVsIGF1dG9yIGRlY2xhcmEgcXVlIHRpZW5lIGxhIGF1dG9yaXphY2nDs24gZXhwcmVzYSBkZSBkaWNob3MgdGl0dWxhcmVzIGRlIGRlcmVjaG9zIGEgbG9zIGZpbmVzIGRlIGVzdGEgY2VzacOzbiwgbyBiaWVuIHF1ZSBoYSBjb25zZXJ2YWRvIGxhIGZhY3VsdGFkIGRlIGNlZGVyIGVzdG9zIGRlcmVjaG9zIGVuIGxhIGZvcm1hIHByZXZpc3RhIGVuIGxhIHByZXNlbnRlIGNlc2nDs24uDQoNCkNvbiBlbCBmaW4gZGUgZGFyIGxhIG3DoXhpbWEgZGlmdXNpw7NuIGEgbGEgb2JyYSBhIHRyYXbDqXMgZGUgUkVESSwgZWwgQVVUT1IgQ0VERSBhIEFOSUksIGRlIGZvcm1hIGdyYXR1aXRhIHkgTk8gRVhDTFVTSVZBLCBjb24gY2Fyw6FjdGVyIGlycmV2b2NhYmxlIGUgaWxpbWl0YWRvIGVuIGVsIHRpZW1wbyB5IGNvbiDDoW1iaXRvIG11bmRpYWwsIGxvcyBkZXJlY2hvcyBkZSByZXByb2R1Y2Npw7NuLCBkZSBkaXN0cmlidWNpw7NuLCBkZSBjb211bmljYWNpw7NuIHDDumJsaWNhLCBpbmNsdWlkbyBlbCBkZXJlY2hvIGRlIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbGVjdHLDs25pY2EsIHBhcmEgcXVlIHB1ZWRhIHNlciB1dGlsaXphZGEgZGUgZm9ybWEgbGlicmUgeSBncmF0dWl0YSBwb3IgdG9kb3MgbG9zIHF1ZSBsbyBkZXNlZW4uDQoNCkxhIGNlc2nDs24gc2UgcmVhbGl6YSBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzOg0KDQpMYSB0aXR1bGFyaWRhZCBkZSBsYSBvYnJhIHNlZ3VpcsOhIGNvcnJlc3BvbmRpZW5kbyBhbCBBdXRvciB5IGxhIHByZXNlbnRlIGNlc2nDs24gZGUgZGVyZWNob3MgcGVybWl0aXLDoSBhIFJFREk6DQoNCihhKVRyYW5zZm9ybWFyIGxhIG9icmEgZW4gbGEgbWVkaWRhIGVuIHF1ZSBzZWEgbmVjZXNhcmlvIHBhcmEgYWRhcHRhcmxhIGEgY3VhbHF1aWVyIHRlY25vbG9nw61hIHN1c2NlcHRpYmxlIGRlIGluY29ycG9yYWNpw7NuIGEgSW50ZXJuZXQ7IHJlYWxpemFyIGxhcyBhZGFwdGFjaW9uZXMgbmVjZXNhcmlhcyBwYXJhIGhhY2VyIHBvc2libGUgc3UgYWNjZXNvIHkgdmlzdWFsaXphY2nDs24gcGVybWFuZW50ZSwgYcO6biBwb3IgcGFydGUgZGUgcGVyc29uYXMgY29uIGRpc2NhcGFjaWRhZCwgcmVhbGl6YXIgbGFzIG1pZ3JhY2lvbmVzIGRlIGZvcm1hdG9zIHBhcmEgYXNlZ3VyYXIgbGEgcHJlc2VydmFjacOzbiBhIGxhcmdvIHBsYXpvLCBpbmNvcnBvcmFyIGxvcyBtZXRhZGF0b3MgbmVjZXNhcmlvcyBwYXJhIHJlYWxpemFyIGVsIHJlZ2lzdHJvIGRlIGxhIG9icmEsIGUgaW5jb3Jwb3JhciB0YW1iacOpbiDigJxtYXJjYXMgZGUgYWd1YeKAnSBvIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgZGUgc2VndXJpZGFkIG8gZGUgcHJvdGVjY2nDs24gbyBkZSBpZGVudGlmaWNhY2nDs24gZGUgcHJvY2VkZW5jaWEuIEVuIG5pbmfDum4gY2FzbyBkaWNoYXMgbW9kaWZpY2FjaW9uZXMgaW1wbGljYXLDoW4gYWR1bHRlcmFjaW9uZXMgZW4gZWwgY29udGVuaWRvIGRlIGxhIG9icmEuDQoNCihiKSBSZXByb2R1Y2lyIGxhIG9icmEgZW4gdW4gbWVkaW8gZGlnaXRhbCBwYXJhIHN1IGluY29ycG9yYWNpw7NuIGEgc2lzdGVtYXMgZGUgYsO6c3F1ZWRhIHkgcmVjdXBlcmFjacOzbiwgaW5jbHV5ZW5kbyBlbCBkZXJlY2hvIGEgcmVwcm9kdWNpciB5IGFsbWFjZW5hcmxhIGVuIHNlcnZpZG9yZXMgdSBvdHJvcyBtZWRpb3MgZGlnaXRhbGVzIGEgbG9zIGVmZWN0b3MgZGUgc2VndXJpZGFkIHkgcHJlc2VydmFjacOzbi4NCg0KKGMpIFBlcm1pdGlyIGEgbG9zIHVzdWFyaW9zIGxhIGRlc2NhcmdhIGRlIGNvcGlhcyBlbGVjdHLDs25pY2FzIGRlIGxhIG9icmEgZW4gdW4gc29wb3J0ZSBkaWdpdGFsLg0KDQooZCkgUmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIGFjY2VzaWJsZSBkZSBtb2RvIGxpYnJlIHkgZ3JhdHVpdG8gYSB0cmF2w6lzIGRlIEludGVybmV0Lg0KDQpFbiB2aXJ0dWQgZGVsIGNhcsOhY3RlciBubyBleGNsdXNpdm8gZGUgbGEgY2VzacOzbiwgZWwgQXV0b3IgY29uc2VydmEgdG9kb3MgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEsIHkgcG9kcsOhIHBvbmVybGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvIGVuIGVzdGEgeSBlbiBwb3N0ZXJpb3JlcyB2ZXJzaW9uZXMsIGEgdHJhdsOpcyBkZSBsb3MgbWVkaW9zIHF1ZSBlc3RpbWUgb3BvcnR1bm9zLg0KDQpFbCBBdXRvciBkZWNsYXJhIGJham8ganVyYW1lbnRvIHF1ZSBsYSBwcmVzZW50ZSBjZXNpw7NuIG5vIGluZnJpbmdlIG5pbmfDum4gZGVyZWNobyBkZSB0ZXJjZXJvcywgeWEgc2VhbiBkZSBwcm9waWVkYWQgaW5kdXN0cmlhbCwgaW50ZWxlY3R1YWwgbyBjdWFscXVpZXIgb3RybyB5IGdhcmFudGl6YSBxdWUgZWwgY29udGVuaWRvIGRlIGxhIG9icmEgbm8gYXRlbnRhIGNvbnRyYSBsb3MgZGVyZWNob3MgYWwgaG9ub3IsIGEgbGEgaW50aW1pZGFkIHkgYSBsYSBpbWFnZW4gZGUgdGVyY2Vyb3MsIG5pIGVzIGRpc2NyaW1pbmF0b3Jpby4gUkVESSBlc3RhcsOhIGV4ZW50byBkZSBsYSByZXZpc2nDs24gZGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhLCBxdWUgZW4gdG9kbyBjYXNvIHBlcm1hbmVjZXLDoSBiYWpvIGxhIHJlc3BvbnNhYmlsaWRhZCBleGNsdXNpdmEgZGVsIEF1dG9yLg0KDQpMYSBvYnJhIHNlIHBvbmRyw6EgYSBkaXNwb3NpY2nDs24gZGUgbG9zIHVzdWFyaW9zIHBhcmEgcXVlIGhhZ2FuIGRlIGVsbGEgdW4gdXNvIGp1c3RvIHkgcmVzcGV0dW9zbyBkZSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIHkgY29uIGZpbmVzIGRlIGVzdHVkaW8sIGludmVzdGlnYWNpw7NuLCBvIGN1YWxxdWllciBvdHJvIGZpbiBsw61jaXRvLiBFbCBtZW5jaW9uYWRvIHVzbywgbcOhcyBhbGzDoSBkZSBsYSBjb3BpYSBwcml2YWRhLCByZXF1ZXJpcsOhIHF1ZSBzZSBjaXRlIGxhIGZ1ZW50ZSB5IHNlIHJlY29ub3pjYSBsYSBhdXRvcsOtYS4gQSB0YWxlcyBmaW5lcyBlbCBBdXRvciBhY2VwdGEgZWwgdXNvIGRlIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zIHkgRUxJR0UgdW5hIGRlIGVzdGFzIGxpY2VuY2lhcyBlc3RhbmRhcml6YWRhcyBhIGxvcyBmaW5lcyBkZSBjb211bmljYXIgc3Ugb2JyYS4NCg0KRWwgQXV0b3IsIGNvbW8gZ2FyYW50ZSBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhIHkgZW4gcmVsYWNpw7NuIGEgbGEgbWlzbWEsIGRlY2xhcmEgcXVlIGxhIEFOSUkgc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSDDqXN0YSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCwgeSBxdWUgw6lsIG1pc21vIGFzdW1lIGxhIHJlc3BvbnNhYmlsaWRhZCBmcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtbyBvIGRlbWFuZGEgcG9yIHBhcnRlIGRlIHRlcmNlcm9zLiBMQSBBTklJIGVzdGFyw6EgZXhlbnRhIGRlIGVqZXJjaXRhciBhY2Npb25lcyBsZWdhbGVzIGVuIG5vbWJyZSBkZWwgQXV0b3IgZW4gZWwgc3VwdWVzdG8gZGUgaW5mcmFjY2lvbmVzIGEgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGRlcml2YWRvcyBkZWwgZGVww7NzaXRvIHkgYXJjaGl2byBkZSBsYSBvYnJhLg0KDQpBTklJIG5vdGlmaWNhcsOhIGFsIEF1dG9yIGRlIGN1YWxxdWllciByZWNsYW1hY2nDs24gcXVlIHJlY2liYSBkZSB0ZXJjZXJvcyBlbiByZWxhY2nDs24gY29uIGxhIG9icmEgeSwgZW4gcGFydGljdWxhciwgZGUgcmVjbGFtYWNpb25lcyByZWxhdGl2YXMgYSBsb3MgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIHNvYnJlIGVsbGEuDQoNCkVsIEF1dG9yIHBvZHLDoSBzb2xpY2l0YXIgZWwgcmV0aXJvIG8gbGEgaW52aXNpYmlsaXphY2nDs24gZGUgbGEgb2JyYSBkZSBSRURJIHPDs2xvIHBvciBjYXVzYSBqdXN0aWZpY2FkYS4gQSB0YWwgZmluIGRlYmVyw6EgbWFuaWZlc3RhciBzdSB2b2x1bnRhZCBlbiBmb3JtYSBmZWhhY2llbnRlIHkgYWNyZWRpdGFyIGRlYmlkYW1lbnRlIGxhIGNhdXNhIGp1c3RpZmljYWRhLiBBc2ltaXNtbyBBTklJIHBvZHLDoSByZXRpcmFyIG8gaW52aXNpYmlsaXphciBsYSBvYnJhIGRlIFJFREksIHByZXZpYSBub3RpZmljYWNpw7NuIGFsIEF1dG9yLCBlbiBzdXB1ZXN0b3Mgc3VmaWNpZW50ZW1lbnRlIGp1c3RpZmljYWRvcywgbyBlbiBjYXNvIGRlIHJlY2xhbWFjaW9uZXMgZGUgdGVyY2Vyb3MuGobiernohttps://fundacionceibal.edu.uy/https://redi.anii.org.uy/oai/requestmamunoz@fundacionceibal.edu.uyUruguayopendoar:9421_12024-04-15T14:59:57Ceibal en REDI - Fundación Ceibalfalse |
spellingShingle | The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good Lepri, Bruno Big Data Algorithms Transparency Accountability Ciencias Sociales Ciencias de la Educación Análisis de datos Procesamiento de datos Ética Tecnología |
status_str | publishedVersion |
title | The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good |
title_full | The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good |
title_fullStr | The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good |
title_full_unstemmed | The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good |
title_short | The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good |
title_sort | The Tyranny of Data? The Bright and Dark Sides of Data-Driven Decision-Making for Social Good |
topic | Big Data Algorithms Transparency Accountability Ciencias Sociales Ciencias de la Educación Análisis de datos Procesamiento de datos Ética Tecnología |
url | https://hdl.handle.net/20.500.12381/316 |