A Data Protection Framework for Learning Analytics
Resumen:
Most studies on the use of digital student data adopt an ethical framework derived from human-studies research, based on the informed consent of the experimental subject. However consent gives universities little guidance on the use of learning analytics as a routine part of educational provision: which purposes are legitimate and which analyses involve an unacceptable risk of harm. Obtaining consent when students join a course will not give them meaningful control over their personal data three or more years later. Relying on consent may exclude those most likely to benefit from early interventions. This paper proposes an alternative framework based on European Data Protection law. Separating the processes of analysis (pattern-finding) and intervention (pattern-matching) gives students and staff continuing protection from inadvertent harm during data analysis; students have a fully informed choice whether or not to accept individual interventions; organisations obtain clear guidance: how to conduct analysis, which analyses should not proceed, and when and how interventions should be offered. The framework provides formal support for practices that are already being adopted and helps with several open questions in learning analytics, including its application to small groups and alumni, automated processing and privacy-sensitive data.
2016 | |
Learning analytics privacy data protection consent legitimate interests Ciencias Sociales Ciencias de la Educación Educación Privacidad Ética Tecnología |
|
Inglés | |
Fundación Ceibal | |
Ceibal en REDI | |
https://hdl.handle.net/20.500.12381/326
https://doi.org/10.18608/jla.2016.31.6 |
|
Acceso abierto | |
Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND) |
_version_ | 1808165426278957056 |
---|---|
author | Cormack, Andrew Nicholas |
author_facet | Cormack, Andrew Nicholas |
author_role | author |
bitstream.checksum.fl_str_mv | 04900bda284772ac092f06dccc513e67 bf028b70743896107cc14ff04a8f8d53 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 |
bitstream.url.fl_str_mv | https://redi.anii.org.uy/jspui/bitstream/20.500.12381/326/2/license.txt https://redi.anii.org.uy/jspui/bitstream/20.500.12381/326/1/4554-Article%20Text-21702-1-10-20160423%20%281%29.pdf |
collection | Ceibal en REDI |
dc.creator.none.fl_str_mv | Cormack, Andrew Nicholas |
dc.date.accessioned.none.fl_str_mv | 2018-11-30T17:08:52Z 2020-10-28T19:25:36Z 2021-09-07T18:04:51Z |
dc.date.available.none.fl_str_mv | 2018-11-30T17:08:52Z 2020-10-28T19:25:36Z 2021-09-07T18:04:51Z |
dc.date.issued.none.fl_str_mv | 2016 |
dc.description.abstract.none.fl_txt_mv | Most studies on the use of digital student data adopt an ethical framework derived from human-studies research, based on the informed consent of the experimental subject. However consent gives universities little guidance on the use of learning analytics as a routine part of educational provision: which purposes are legitimate and which analyses involve an unacceptable risk of harm. Obtaining consent when students join a course will not give them meaningful control over their personal data three or more years later. Relying on consent may exclude those most likely to benefit from early interventions. This paper proposes an alternative framework based on European Data Protection law. Separating the processes of analysis (pattern-finding) and intervention (pattern-matching) gives students and staff continuing protection from inadvertent harm during data analysis; students have a fully informed choice whether or not to accept individual interventions; organisations obtain clear guidance: how to conduct analysis, which analyses should not proceed, and when and how interventions should be offered. The framework provides formal support for practices that are already being adopted and helps with several open questions in learning analytics, including its application to small groups and alumni, automated processing and privacy-sensitive data. |
dc.format.extent.es.fl_str_mv | pp. 91-106 |
dc.identifier.citation.es.fl_str_mv | Cormack, A. N. (2016). A Data Protection Framework for Learning Analytics. Journal of Learning Analytics, 3(1), 91-106. Website https://learning-analytics.info/journals/index.php/JLA/article/view/4554 (accessed November 30th, 2018). |
dc.identifier.doi.none.fl_str_mv | https://doi.org/10.18608/jla.2016.31.6 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12381/326 |
dc.language.iso.none.fl_str_mv | eng |
dc.publisher.es.fl_str_mv | SOLAR (Society for Learning Analytics Research) |
dc.rights.es.fl_str_mv | Acceso abierto |
dc.rights.license.none.fl_str_mv | Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.es.fl_str_mv | Journal of Learning Analytics Vol. 3 N° 1 |
dc.source.none.fl_str_mv | reponame:Ceibal en REDI instname:Fundación Ceibal instacron:Fundación Ceibal |
dc.subject.anii.none.fl_str_mv | Ciencias Sociales Ciencias de la Educación |
dc.subject.ceibal.es.fl_str_mv | Educación Privacidad Ética Tecnología |
dc.subject.es.fl_str_mv | Learning analytics privacy data protection consent legitimate interests |
dc.title.none.fl_str_mv | A Data Protection Framework for Learning Analytics |
dc.type.es.fl_str_mv | Artículo |
dc.type.none.fl_str_mv | info:eu-repo/semantics/article |
dc.type.version.es.fl_str_mv | Publicado |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Most studies on the use of digital student data adopt an ethical framework derived from human-studies research, based on the informed consent of the experimental subject. However consent gives universities little guidance on the use of learning analytics as a routine part of educational provision: which purposes are legitimate and which analyses involve an unacceptable risk of harm. Obtaining consent when students join a course will not give them meaningful control over their personal data three or more years later. Relying on consent may exclude those most likely to benefit from early interventions. This paper proposes an alternative framework based on European Data Protection law. Separating the processes of analysis (pattern-finding) and intervention (pattern-matching) gives students and staff continuing protection from inadvertent harm during data analysis; students have a fully informed choice whether or not to accept individual interventions; organisations obtain clear guidance: how to conduct analysis, which analyses should not proceed, and when and how interventions should be offered. The framework provides formal support for practices that are already being adopted and helps with several open questions in learning analytics, including its application to small groups and alumni, automated processing and privacy-sensitive data. |
eu_rights_str_mv | openAccess |
format | article |
id | CEIBAL_493f6ed9394fbc83154134bd4affcd12 |
identifier_str_mv | Cormack, A. N. (2016). A Data Protection Framework for Learning Analytics. Journal of Learning Analytics, 3(1), 91-106. Website https://learning-analytics.info/journals/index.php/JLA/article/view/4554 (accessed November 30th, 2018). |
instacron_str | Fundación Ceibal |
institution | Fundación Ceibal |
instname_str | Fundación Ceibal |
language | eng |
network_acronym_str | CEIBAL |
network_name_str | Ceibal en REDI |
oai_identifier_str | oai:redi.anii.org.uy:20.500.12381/326 |
publishDate | 2016 |
reponame_str | Ceibal en REDI |
repository.mail.fl_str_mv | mamunoz@fundacionceibal.edu.uy |
repository.name.fl_str_mv | Ceibal en REDI - Fundación Ceibal |
repository_id_str | 9421_1 |
rights_invalid_str_mv | Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND) Acceso abierto |
spelling | Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)Acceso abiertoinfo:eu-repo/semantics/openAccess2018-11-30T17:08:52Z2020-10-28T19:25:36Z2021-09-07T18:04:51Z2018-11-30T17:08:52Z2020-10-28T19:25:36Z2021-09-07T18:04:51Z2016Cormack, A. N. (2016). A Data Protection Framework for Learning Analytics. Journal of Learning Analytics, 3(1), 91-106. Website https://learning-analytics.info/journals/index.php/JLA/article/view/4554 (accessed November 30th, 2018).https://hdl.handle.net/20.500.12381/326https://doi.org/10.18608/jla.2016.31.6Most studies on the use of digital student data adopt an ethical framework derived from human-studies research, based on the informed consent of the experimental subject. However consent gives universities little guidance on the use of learning analytics as a routine part of educational provision: which purposes are legitimate and which analyses involve an unacceptable risk of harm. Obtaining consent when students join a course will not give them meaningful control over their personal data three or more years later. Relying on consent may exclude those most likely to benefit from early interventions. This paper proposes an alternative framework based on European Data Protection law. Separating the processes of analysis (pattern-finding) and intervention (pattern-matching) gives students and staff continuing protection from inadvertent harm during data analysis; students have a fully informed choice whether or not to accept individual interventions; organisations obtain clear guidance: how to conduct analysis, which analyses should not proceed, and when and how interventions should be offered. The framework provides formal support for practices that are already being adopted and helps with several open questions in learning analytics, including its application to small groups and alumni, automated processing and privacy-sensitive data.pp. 91-106engSOLAR (Society for Learning Analytics Research)Journal of Learning AnalyticsVol. 3N° 1reponame:Ceibal en REDIinstname:Fundación Ceibalinstacron:Fundación CeibalLearning analyticsprivacydata protectionconsentlegitimate interestsCiencias SocialesCiencias de la EducaciónEducaciónPrivacidadÉticaTecnologíaA Data Protection Framework for Learning AnalyticsArtículoPublicadoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleRecursos y plataformasNuevas formas de conocer, aprender, enseñar y evaluarOtroCormack, Andrew NicholasLICENSElicense.txttext/plain4611https://redi.anii.org.uy/jspui/bitstream/20.500.12381/326/2/license.txt04900bda284772ac092f06dccc513e67MD52ORIGINAL4554-Article Text-21702-1-10-20160423 (1).pdfapplication/pdf505966https://redi.anii.org.uy/jspui/bitstream/20.500.12381/326/1/4554-Article%20Text-21702-1-10-20160423%20%281%29.pdfbf028b70743896107cc14ff04a8f8d53MD5120.500.12381/3262024-04-15 12:00:00.439oai:redi.anii.org.uy:20.500.12381/326QWNlcHRhbmRvIGxhIGNlc2nDs24gZGUgZGVyZWNob3MgZWwgdXN1YXJpbyBERUNMQVJBIHF1ZSBvc3RlbnRhIGxhIGNvbmRpY2nDs24gZGUgYXV0b3IgZW4gZWwgc2VudGlkbyBxdWUgb3RvcmdhIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlIHNvYnJlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBkZSBsYSBvYnJhIG9yaWdpbmFsIHF1ZSBlc3TDoSBlbnZpYW5kbyAo4oCcbGEgb2JyYeKAnSkuIEVuIGNhc28gZGUgc2VyIGNvdGl0dWxhciwgZWwgYXV0b3IgZGVjbGFyYSBxdWUgY3VlbnRhIGNvbiBlbCBjb25zZW50aW1pZW50byBkZSBsb3MgcmVzdGFudGVzIHRpdHVsYXJlcyBwYXJhIGhhY2VyIGxhIHByZXNlbnRlIGNlc2nDs24uIEVuIGNhc28gZGUgcHJldmlhIGNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlIGV4cGxvdGFjacOzbiBzb2JyZSBsYSBvYnJhIGEgdGVyY2Vyb3MsIGVsIGF1dG9yIGRlY2xhcmEgcXVlIHRpZW5lIGxhIGF1dG9yaXphY2nDs24gZXhwcmVzYSBkZSBkaWNob3MgdGl0dWxhcmVzIGRlIGRlcmVjaG9zIGEgbG9zIGZpbmVzIGRlIGVzdGEgY2VzacOzbiwgbyBiaWVuIHF1ZSBoYSBjb25zZXJ2YWRvIGxhIGZhY3VsdGFkIGRlIGNlZGVyIGVzdG9zIGRlcmVjaG9zIGVuIGxhIGZvcm1hIHByZXZpc3RhIGVuIGxhIHByZXNlbnRlIGNlc2nDs24uDQoNCkNvbiBlbCBmaW4gZGUgZGFyIGxhIG3DoXhpbWEgZGlmdXNpw7NuIGEgbGEgb2JyYSBhIHRyYXbDqXMgZGUgUkVESSwgZWwgQVVUT1IgQ0VERSBhIEFOSUksIGRlIGZvcm1hIGdyYXR1aXRhIHkgTk8gRVhDTFVTSVZBLCBjb24gY2Fyw6FjdGVyIGlycmV2b2NhYmxlIGUgaWxpbWl0YWRvIGVuIGVsIHRpZW1wbyB5IGNvbiDDoW1iaXRvIG11bmRpYWwsIGxvcyBkZXJlY2hvcyBkZSByZXByb2R1Y2Npw7NuLCBkZSBkaXN0cmlidWNpw7NuLCBkZSBjb211bmljYWNpw7NuIHDDumJsaWNhLCBpbmNsdWlkbyBlbCBkZXJlY2hvIGRlIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbGVjdHLDs25pY2EsIHBhcmEgcXVlIHB1ZWRhIHNlciB1dGlsaXphZGEgZGUgZm9ybWEgbGlicmUgeSBncmF0dWl0YSBwb3IgdG9kb3MgbG9zIHF1ZSBsbyBkZXNlZW4uDQoNCkxhIGNlc2nDs24gc2UgcmVhbGl6YSBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzOg0KDQpMYSB0aXR1bGFyaWRhZCBkZSBsYSBvYnJhIHNlZ3VpcsOhIGNvcnJlc3BvbmRpZW5kbyBhbCBBdXRvciB5IGxhIHByZXNlbnRlIGNlc2nDs24gZGUgZGVyZWNob3MgcGVybWl0aXLDoSBhIFJFREk6DQoNCihhKVRyYW5zZm9ybWFyIGxhIG9icmEgZW4gbGEgbWVkaWRhIGVuIHF1ZSBzZWEgbmVjZXNhcmlvIHBhcmEgYWRhcHRhcmxhIGEgY3VhbHF1aWVyIHRlY25vbG9nw61hIHN1c2NlcHRpYmxlIGRlIGluY29ycG9yYWNpw7NuIGEgSW50ZXJuZXQ7IHJlYWxpemFyIGxhcyBhZGFwdGFjaW9uZXMgbmVjZXNhcmlhcyBwYXJhIGhhY2VyIHBvc2libGUgc3UgYWNjZXNvIHkgdmlzdWFsaXphY2nDs24gcGVybWFuZW50ZSwgYcO6biBwb3IgcGFydGUgZGUgcGVyc29uYXMgY29uIGRpc2NhcGFjaWRhZCwgcmVhbGl6YXIgbGFzIG1pZ3JhY2lvbmVzIGRlIGZvcm1hdG9zIHBhcmEgYXNlZ3VyYXIgbGEgcHJlc2VydmFjacOzbiBhIGxhcmdvIHBsYXpvLCBpbmNvcnBvcmFyIGxvcyBtZXRhZGF0b3MgbmVjZXNhcmlvcyBwYXJhIHJlYWxpemFyIGVsIHJlZ2lzdHJvIGRlIGxhIG9icmEsIGUgaW5jb3Jwb3JhciB0YW1iacOpbiDigJxtYXJjYXMgZGUgYWd1YeKAnSBvIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgZGUgc2VndXJpZGFkIG8gZGUgcHJvdGVjY2nDs24gbyBkZSBpZGVudGlmaWNhY2nDs24gZGUgcHJvY2VkZW5jaWEuIEVuIG5pbmfDum4gY2FzbyBkaWNoYXMgbW9kaWZpY2FjaW9uZXMgaW1wbGljYXLDoW4gYWR1bHRlcmFjaW9uZXMgZW4gZWwgY29udGVuaWRvIGRlIGxhIG9icmEuDQoNCihiKSBSZXByb2R1Y2lyIGxhIG9icmEgZW4gdW4gbWVkaW8gZGlnaXRhbCBwYXJhIHN1IGluY29ycG9yYWNpw7NuIGEgc2lzdGVtYXMgZGUgYsO6c3F1ZWRhIHkgcmVjdXBlcmFjacOzbiwgaW5jbHV5ZW5kbyBlbCBkZXJlY2hvIGEgcmVwcm9kdWNpciB5IGFsbWFjZW5hcmxhIGVuIHNlcnZpZG9yZXMgdSBvdHJvcyBtZWRpb3MgZGlnaXRhbGVzIGEgbG9zIGVmZWN0b3MgZGUgc2VndXJpZGFkIHkgcHJlc2VydmFjacOzbi4NCg0KKGMpIFBlcm1pdGlyIGEgbG9zIHVzdWFyaW9zIGxhIGRlc2NhcmdhIGRlIGNvcGlhcyBlbGVjdHLDs25pY2FzIGRlIGxhIG9icmEgZW4gdW4gc29wb3J0ZSBkaWdpdGFsLg0KDQooZCkgUmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIGFjY2VzaWJsZSBkZSBtb2RvIGxpYnJlIHkgZ3JhdHVpdG8gYSB0cmF2w6lzIGRlIEludGVybmV0Lg0KDQpFbiB2aXJ0dWQgZGVsIGNhcsOhY3RlciBubyBleGNsdXNpdm8gZGUgbGEgY2VzacOzbiwgZWwgQXV0b3IgY29uc2VydmEgdG9kb3MgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEsIHkgcG9kcsOhIHBvbmVybGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvIGVuIGVzdGEgeSBlbiBwb3N0ZXJpb3JlcyB2ZXJzaW9uZXMsIGEgdHJhdsOpcyBkZSBsb3MgbWVkaW9zIHF1ZSBlc3RpbWUgb3BvcnR1bm9zLg0KDQpFbCBBdXRvciBkZWNsYXJhIGJham8ganVyYW1lbnRvIHF1ZSBsYSBwcmVzZW50ZSBjZXNpw7NuIG5vIGluZnJpbmdlIG5pbmfDum4gZGVyZWNobyBkZSB0ZXJjZXJvcywgeWEgc2VhbiBkZSBwcm9waWVkYWQgaW5kdXN0cmlhbCwgaW50ZWxlY3R1YWwgbyBjdWFscXVpZXIgb3RybyB5IGdhcmFudGl6YSBxdWUgZWwgY29udGVuaWRvIGRlIGxhIG9icmEgbm8gYXRlbnRhIGNvbnRyYSBsb3MgZGVyZWNob3MgYWwgaG9ub3IsIGEgbGEgaW50aW1pZGFkIHkgYSBsYSBpbWFnZW4gZGUgdGVyY2Vyb3MsIG5pIGVzIGRpc2NyaW1pbmF0b3Jpby4gUkVESSBlc3RhcsOhIGV4ZW50byBkZSBsYSByZXZpc2nDs24gZGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhLCBxdWUgZW4gdG9kbyBjYXNvIHBlcm1hbmVjZXLDoSBiYWpvIGxhIHJlc3BvbnNhYmlsaWRhZCBleGNsdXNpdmEgZGVsIEF1dG9yLg0KDQpMYSBvYnJhIHNlIHBvbmRyw6EgYSBkaXNwb3NpY2nDs24gZGUgbG9zIHVzdWFyaW9zIHBhcmEgcXVlIGhhZ2FuIGRlIGVsbGEgdW4gdXNvIGp1c3RvIHkgcmVzcGV0dW9zbyBkZSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIHkgY29uIGZpbmVzIGRlIGVzdHVkaW8sIGludmVzdGlnYWNpw7NuLCBvIGN1YWxxdWllciBvdHJvIGZpbiBsw61jaXRvLiBFbCBtZW5jaW9uYWRvIHVzbywgbcOhcyBhbGzDoSBkZSBsYSBjb3BpYSBwcml2YWRhLCByZXF1ZXJpcsOhIHF1ZSBzZSBjaXRlIGxhIGZ1ZW50ZSB5IHNlIHJlY29ub3pjYSBsYSBhdXRvcsOtYS4gQSB0YWxlcyBmaW5lcyBlbCBBdXRvciBhY2VwdGEgZWwgdXNvIGRlIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zIHkgRUxJR0UgdW5hIGRlIGVzdGFzIGxpY2VuY2lhcyBlc3RhbmRhcml6YWRhcyBhIGxvcyBmaW5lcyBkZSBjb211bmljYXIgc3Ugb2JyYS4NCg0KRWwgQXV0b3IsIGNvbW8gZ2FyYW50ZSBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhIHkgZW4gcmVsYWNpw7NuIGEgbGEgbWlzbWEsIGRlY2xhcmEgcXVlIGxhIEFOSUkgc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSDDqXN0YSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCwgeSBxdWUgw6lsIG1pc21vIGFzdW1lIGxhIHJlc3BvbnNhYmlsaWRhZCBmcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtbyBvIGRlbWFuZGEgcG9yIHBhcnRlIGRlIHRlcmNlcm9zLiBMQSBBTklJIGVzdGFyw6EgZXhlbnRhIGRlIGVqZXJjaXRhciBhY2Npb25lcyBsZWdhbGVzIGVuIG5vbWJyZSBkZWwgQXV0b3IgZW4gZWwgc3VwdWVzdG8gZGUgaW5mcmFjY2lvbmVzIGEgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGRlcml2YWRvcyBkZWwgZGVww7NzaXRvIHkgYXJjaGl2byBkZSBsYSBvYnJhLg0KDQpBTklJIG5vdGlmaWNhcsOhIGFsIEF1dG9yIGRlIGN1YWxxdWllciByZWNsYW1hY2nDs24gcXVlIHJlY2liYSBkZSB0ZXJjZXJvcyBlbiByZWxhY2nDs24gY29uIGxhIG9icmEgeSwgZW4gcGFydGljdWxhciwgZGUgcmVjbGFtYWNpb25lcyByZWxhdGl2YXMgYSBsb3MgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIHNvYnJlIGVsbGEuDQoNCkVsIEF1dG9yIHBvZHLDoSBzb2xpY2l0YXIgZWwgcmV0aXJvIG8gbGEgaW52aXNpYmlsaXphY2nDs24gZGUgbGEgb2JyYSBkZSBSRURJIHPDs2xvIHBvciBjYXVzYSBqdXN0aWZpY2FkYS4gQSB0YWwgZmluIGRlYmVyw6EgbWFuaWZlc3RhciBzdSB2b2x1bnRhZCBlbiBmb3JtYSBmZWhhY2llbnRlIHkgYWNyZWRpdGFyIGRlYmlkYW1lbnRlIGxhIGNhdXNhIGp1c3RpZmljYWRhLiBBc2ltaXNtbyBBTklJIHBvZHLDoSByZXRpcmFyIG8gaW52aXNpYmlsaXphciBsYSBvYnJhIGRlIFJFREksIHByZXZpYSBub3RpZmljYWNpw7NuIGFsIEF1dG9yLCBlbiBzdXB1ZXN0b3Mgc3VmaWNpZW50ZW1lbnRlIGp1c3RpZmljYWRvcywgbyBlbiBjYXNvIGRlIHJlY2xhbWFjaW9uZXMgZGUgdGVyY2Vyb3MuGobiernohttps://fundacionceibal.edu.uy/https://redi.anii.org.uy/oai/requestmamunoz@fundacionceibal.edu.uyUruguayopendoar:9421_12024-04-15T15:00Ceibal en REDI - Fundación Ceibalfalse |
spellingShingle | A Data Protection Framework for Learning Analytics Cormack, Andrew Nicholas Learning analytics privacy data protection consent legitimate interests Ciencias Sociales Ciencias de la Educación Educación Privacidad Ética Tecnología |
status_str | publishedVersion |
title | A Data Protection Framework for Learning Analytics |
title_full | A Data Protection Framework for Learning Analytics |
title_fullStr | A Data Protection Framework for Learning Analytics |
title_full_unstemmed | A Data Protection Framework for Learning Analytics |
title_short | A Data Protection Framework for Learning Analytics |
title_sort | A Data Protection Framework for Learning Analytics |
topic | Learning analytics privacy data protection consent legitimate interests Ciencias Sociales Ciencias de la Educación Educación Privacidad Ética Tecnología |
url | https://hdl.handle.net/20.500.12381/326 https://doi.org/10.18608/jla.2016.31.6 |