A Data Protection Framework for Learning Analytics

Cormack, Andrew Nicholas

Resumen:

Most studies on the use of digital student data adopt an ethical framework derived from human-studies research, based on the informed consent of the experimental subject. However consent gives universities little guidance on the use of learning analytics as a routine part of educational provision: which purposes are legitimate and which analyses involve an unacceptable risk of harm. Obtaining consent when students join a course will not give them meaningful control over their personal data three or more years later. Relying on consent may exclude those most likely to benefit from early interventions. This paper proposes an alternative framework based on European Data Protection law. Separating the processes of analysis (pattern-finding) and intervention (pattern-matching) gives students and staff continuing protection from inadvertent harm during data analysis; students have a fully informed choice whether or not to accept individual interventions; organisations obtain clear guidance: how to conduct analysis, which analyses should not proceed, and when and how interventions should be offered. The framework provides formal support for practices that are already being adopted and helps with several open questions in learning analytics, including its application to small groups and alumni, automated processing and privacy-sensitive data.


Detalles Bibliográficos
2016
Learning analytics
privacy
data protection
consent
legitimate interests
Ciencias Sociales
Ciencias de la Educación
Educación
Privacidad
Ética
Tecnología
Inglés
Fundación Ceibal
Ceibal en REDI
https://hdl.handle.net/20.500.12381/326
https://doi.org/10.18608/jla.2016.31.6
Acceso abierto
Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)
_version_ 1808165426278957056
author Cormack, Andrew Nicholas
author_facet Cormack, Andrew Nicholas
author_role author
bitstream.checksum.fl_str_mv 04900bda284772ac092f06dccc513e67
bf028b70743896107cc14ff04a8f8d53
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
bitstream.url.fl_str_mv https://redi.anii.org.uy/jspui/bitstream/20.500.12381/326/2/license.txt
https://redi.anii.org.uy/jspui/bitstream/20.500.12381/326/1/4554-Article%20Text-21702-1-10-20160423%20%281%29.pdf
collection Ceibal en REDI
dc.creator.none.fl_str_mv Cormack, Andrew Nicholas
dc.date.accessioned.none.fl_str_mv 2018-11-30T17:08:52Z
2020-10-28T19:25:36Z
2021-09-07T18:04:51Z
dc.date.available.none.fl_str_mv 2018-11-30T17:08:52Z
2020-10-28T19:25:36Z
2021-09-07T18:04:51Z
dc.date.issued.none.fl_str_mv 2016
dc.description.abstract.none.fl_txt_mv Most studies on the use of digital student data adopt an ethical framework derived from human-studies research, based on the informed consent of the experimental subject. However consent gives universities little guidance on the use of learning analytics as a routine part of educational provision: which purposes are legitimate and which analyses involve an unacceptable risk of harm. Obtaining consent when students join a course will not give them meaningful control over their personal data three or more years later. Relying on consent may exclude those most likely to benefit from early interventions. This paper proposes an alternative framework based on European Data Protection law. Separating the processes of analysis (pattern-finding) and intervention (pattern-matching) gives students and staff continuing protection from inadvertent harm during data analysis; students have a fully informed choice whether or not to accept individual interventions; organisations obtain clear guidance: how to conduct analysis, which analyses should not proceed, and when and how interventions should be offered. The framework provides formal support for practices that are already being adopted and helps with several open questions in learning analytics, including its application to small groups and alumni, automated processing and privacy-sensitive data.
dc.format.extent.es.fl_str_mv pp. 91-106
dc.identifier.citation.es.fl_str_mv Cormack, A. N. (2016). A Data Protection Framework for Learning Analytics. Journal of Learning Analytics, 3(1), 91-106. Website https://learning-analytics.info/journals/index.php/JLA/article/view/4554 (accessed November 30th, 2018).
dc.identifier.doi.none.fl_str_mv https://doi.org/10.18608/jla.2016.31.6
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12381/326
dc.language.iso.none.fl_str_mv eng
dc.publisher.es.fl_str_mv SOLAR (Society for Learning Analytics Research)
dc.rights.es.fl_str_mv Acceso abierto
dc.rights.license.none.fl_str_mv Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.es.fl_str_mv Journal of Learning Analytics
Vol. 3
N° 1
dc.source.none.fl_str_mv reponame:Ceibal en REDI
instname:Fundación Ceibal
instacron:Fundación Ceibal
dc.subject.anii.none.fl_str_mv Ciencias Sociales
Ciencias de la Educación
dc.subject.ceibal.es.fl_str_mv Educación
Privacidad
Ética
Tecnología
dc.subject.es.fl_str_mv Learning analytics
privacy
data protection
consent
legitimate interests
dc.title.none.fl_str_mv A Data Protection Framework for Learning Analytics
dc.type.es.fl_str_mv Artículo
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es.fl_str_mv Publicado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Most studies on the use of digital student data adopt an ethical framework derived from human-studies research, based on the informed consent of the experimental subject. However consent gives universities little guidance on the use of learning analytics as a routine part of educational provision: which purposes are legitimate and which analyses involve an unacceptable risk of harm. Obtaining consent when students join a course will not give them meaningful control over their personal data three or more years later. Relying on consent may exclude those most likely to benefit from early interventions. This paper proposes an alternative framework based on European Data Protection law. Separating the processes of analysis (pattern-finding) and intervention (pattern-matching) gives students and staff continuing protection from inadvertent harm during data analysis; students have a fully informed choice whether or not to accept individual interventions; organisations obtain clear guidance: how to conduct analysis, which analyses should not proceed, and when and how interventions should be offered. The framework provides formal support for practices that are already being adopted and helps with several open questions in learning analytics, including its application to small groups and alumni, automated processing and privacy-sensitive data.
eu_rights_str_mv openAccess
format article
id CEIBAL_493f6ed9394fbc83154134bd4affcd12
identifier_str_mv Cormack, A. N. (2016). A Data Protection Framework for Learning Analytics. Journal of Learning Analytics, 3(1), 91-106. Website https://learning-analytics.info/journals/index.php/JLA/article/view/4554 (accessed November 30th, 2018).
instacron_str Fundación Ceibal
institution Fundación Ceibal
instname_str Fundación Ceibal
language eng
network_acronym_str CEIBAL
network_name_str Ceibal en REDI
oai_identifier_str oai:redi.anii.org.uy:20.500.12381/326
publishDate 2016
reponame_str Ceibal en REDI
repository.mail.fl_str_mv mamunoz@fundacionceibal.edu.uy
repository.name.fl_str_mv Ceibal en REDI - Fundación Ceibal
repository_id_str 9421_1
rights_invalid_str_mv Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)
Acceso abierto
spelling Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND)Acceso abiertoinfo:eu-repo/semantics/openAccess2018-11-30T17:08:52Z2020-10-28T19:25:36Z2021-09-07T18:04:51Z2018-11-30T17:08:52Z2020-10-28T19:25:36Z2021-09-07T18:04:51Z2016Cormack, A. N. (2016). A Data Protection Framework for Learning Analytics. Journal of Learning Analytics, 3(1), 91-106. Website https://learning-analytics.info/journals/index.php/JLA/article/view/4554 (accessed November 30th, 2018).https://hdl.handle.net/20.500.12381/326https://doi.org/10.18608/jla.2016.31.6Most studies on the use of digital student data adopt an ethical framework derived from human-studies research, based on the informed consent of the experimental subject. However consent gives universities little guidance on the use of learning analytics as a routine part of educational provision: which purposes are legitimate and which analyses involve an unacceptable risk of harm. Obtaining consent when students join a course will not give them meaningful control over their personal data three or more years later. Relying on consent may exclude those most likely to benefit from early interventions. This paper proposes an alternative framework based on European Data Protection law. Separating the processes of analysis (pattern-finding) and intervention (pattern-matching) gives students and staff continuing protection from inadvertent harm during data analysis; students have a fully informed choice whether or not to accept individual interventions; organisations obtain clear guidance: how to conduct analysis, which analyses should not proceed, and when and how interventions should be offered. The framework provides formal support for practices that are already being adopted and helps with several open questions in learning analytics, including its application to small groups and alumni, automated processing and privacy-sensitive data.pp. 91-106engSOLAR (Society for Learning Analytics Research)Journal of Learning AnalyticsVol. 3N° 1reponame:Ceibal en REDIinstname:Fundación Ceibalinstacron:Fundación CeibalLearning analyticsprivacydata protectionconsentlegitimate interestsCiencias SocialesCiencias de la EducaciónEducaciónPrivacidadÉticaTecnologíaA Data Protection Framework for Learning AnalyticsArtículoPublicadoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleRecursos y plataformasNuevas formas de conocer, aprender, enseñar y evaluarOtroCormack, Andrew NicholasLICENSElicense.txttext/plain4611https://redi.anii.org.uy/jspui/bitstream/20.500.12381/326/2/license.txt04900bda284772ac092f06dccc513e67MD52ORIGINAL4554-Article Text-21702-1-10-20160423 (1).pdfapplication/pdf505966https://redi.anii.org.uy/jspui/bitstream/20.500.12381/326/1/4554-Article%20Text-21702-1-10-20160423%20%281%29.pdfbf028b70743896107cc14ff04a8f8d53MD5120.500.12381/3262024-04-15 12:00:00.439oai:redi.anii.org.uy:20.500.12381/326QWNlcHRhbmRvIGxhIGNlc2nDs24gZGUgZGVyZWNob3MgZWwgdXN1YXJpbyBERUNMQVJBIHF1ZSBvc3RlbnRhIGxhIGNvbmRpY2nDs24gZGUgYXV0b3IgZW4gZWwgc2VudGlkbyBxdWUgb3RvcmdhIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlIHNvYnJlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBkZSBsYSBvYnJhIG9yaWdpbmFsIHF1ZSBlc3TDoSBlbnZpYW5kbyAo4oCcbGEgb2JyYeKAnSkuIEVuIGNhc28gZGUgc2VyIGNvdGl0dWxhciwgZWwgYXV0b3IgZGVjbGFyYSBxdWUgY3VlbnRhIGNvbiBlbCBjb25zZW50aW1pZW50byBkZSBsb3MgcmVzdGFudGVzIHRpdHVsYXJlcyBwYXJhIGhhY2VyIGxhIHByZXNlbnRlIGNlc2nDs24uIEVuIGNhc28gZGUgcHJldmlhIGNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlIGV4cGxvdGFjacOzbiBzb2JyZSBsYSBvYnJhIGEgdGVyY2Vyb3MsIGVsIGF1dG9yIGRlY2xhcmEgcXVlIHRpZW5lIGxhIGF1dG9yaXphY2nDs24gZXhwcmVzYSBkZSBkaWNob3MgdGl0dWxhcmVzIGRlIGRlcmVjaG9zIGEgbG9zIGZpbmVzIGRlIGVzdGEgY2VzacOzbiwgbyBiaWVuIHF1ZSBoYSBjb25zZXJ2YWRvIGxhIGZhY3VsdGFkIGRlIGNlZGVyIGVzdG9zIGRlcmVjaG9zIGVuIGxhIGZvcm1hIHByZXZpc3RhIGVuIGxhIHByZXNlbnRlIGNlc2nDs24uDQoNCkNvbiBlbCBmaW4gZGUgZGFyIGxhIG3DoXhpbWEgZGlmdXNpw7NuIGEgbGEgb2JyYSBhIHRyYXbDqXMgZGUgUkVESSwgZWwgQVVUT1IgQ0VERSBhIEFOSUksIGRlIGZvcm1hIGdyYXR1aXRhIHkgTk8gRVhDTFVTSVZBLCBjb24gY2Fyw6FjdGVyIGlycmV2b2NhYmxlIGUgaWxpbWl0YWRvIGVuIGVsIHRpZW1wbyB5IGNvbiDDoW1iaXRvIG11bmRpYWwsIGxvcyBkZXJlY2hvcyBkZSByZXByb2R1Y2Npw7NuLCBkZSBkaXN0cmlidWNpw7NuLCBkZSBjb211bmljYWNpw7NuIHDDumJsaWNhLCBpbmNsdWlkbyBlbCBkZXJlY2hvIGRlIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbGVjdHLDs25pY2EsIHBhcmEgcXVlIHB1ZWRhIHNlciB1dGlsaXphZGEgZGUgZm9ybWEgbGlicmUgeSBncmF0dWl0YSBwb3IgdG9kb3MgbG9zIHF1ZSBsbyBkZXNlZW4uDQoNCkxhIGNlc2nDs24gc2UgcmVhbGl6YSBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzOg0KDQpMYSB0aXR1bGFyaWRhZCBkZSBsYSBvYnJhIHNlZ3VpcsOhIGNvcnJlc3BvbmRpZW5kbyBhbCBBdXRvciB5IGxhIHByZXNlbnRlIGNlc2nDs24gZGUgZGVyZWNob3MgcGVybWl0aXLDoSBhIFJFREk6DQoNCihhKVRyYW5zZm9ybWFyIGxhIG9icmEgZW4gbGEgbWVkaWRhIGVuIHF1ZSBzZWEgbmVjZXNhcmlvIHBhcmEgYWRhcHRhcmxhIGEgY3VhbHF1aWVyIHRlY25vbG9nw61hIHN1c2NlcHRpYmxlIGRlIGluY29ycG9yYWNpw7NuIGEgSW50ZXJuZXQ7IHJlYWxpemFyIGxhcyBhZGFwdGFjaW9uZXMgbmVjZXNhcmlhcyBwYXJhIGhhY2VyIHBvc2libGUgc3UgYWNjZXNvIHkgdmlzdWFsaXphY2nDs24gcGVybWFuZW50ZSwgYcO6biBwb3IgcGFydGUgZGUgcGVyc29uYXMgY29uIGRpc2NhcGFjaWRhZCwgcmVhbGl6YXIgbGFzIG1pZ3JhY2lvbmVzIGRlIGZvcm1hdG9zIHBhcmEgYXNlZ3VyYXIgbGEgcHJlc2VydmFjacOzbiBhIGxhcmdvIHBsYXpvLCBpbmNvcnBvcmFyIGxvcyBtZXRhZGF0b3MgbmVjZXNhcmlvcyBwYXJhIHJlYWxpemFyIGVsIHJlZ2lzdHJvIGRlIGxhIG9icmEsIGUgaW5jb3Jwb3JhciB0YW1iacOpbiDigJxtYXJjYXMgZGUgYWd1YeKAnSBvIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgZGUgc2VndXJpZGFkIG8gZGUgcHJvdGVjY2nDs24gbyBkZSBpZGVudGlmaWNhY2nDs24gZGUgcHJvY2VkZW5jaWEuIEVuIG5pbmfDum4gY2FzbyBkaWNoYXMgbW9kaWZpY2FjaW9uZXMgaW1wbGljYXLDoW4gYWR1bHRlcmFjaW9uZXMgZW4gZWwgY29udGVuaWRvIGRlIGxhIG9icmEuDQoNCihiKSBSZXByb2R1Y2lyIGxhIG9icmEgZW4gdW4gbWVkaW8gZGlnaXRhbCBwYXJhIHN1IGluY29ycG9yYWNpw7NuIGEgc2lzdGVtYXMgZGUgYsO6c3F1ZWRhIHkgcmVjdXBlcmFjacOzbiwgaW5jbHV5ZW5kbyBlbCBkZXJlY2hvIGEgcmVwcm9kdWNpciB5IGFsbWFjZW5hcmxhIGVuIHNlcnZpZG9yZXMgdSBvdHJvcyBtZWRpb3MgZGlnaXRhbGVzIGEgbG9zIGVmZWN0b3MgZGUgc2VndXJpZGFkIHkgcHJlc2VydmFjacOzbi4NCg0KKGMpIFBlcm1pdGlyIGEgbG9zIHVzdWFyaW9zIGxhIGRlc2NhcmdhIGRlIGNvcGlhcyBlbGVjdHLDs25pY2FzIGRlIGxhIG9icmEgZW4gdW4gc29wb3J0ZSBkaWdpdGFsLg0KDQooZCkgUmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIGFjY2VzaWJsZSBkZSBtb2RvIGxpYnJlIHkgZ3JhdHVpdG8gYSB0cmF2w6lzIGRlIEludGVybmV0Lg0KDQpFbiB2aXJ0dWQgZGVsIGNhcsOhY3RlciBubyBleGNsdXNpdm8gZGUgbGEgY2VzacOzbiwgZWwgQXV0b3IgY29uc2VydmEgdG9kb3MgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEsIHkgcG9kcsOhIHBvbmVybGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvIGVuIGVzdGEgeSBlbiBwb3N0ZXJpb3JlcyB2ZXJzaW9uZXMsIGEgdHJhdsOpcyBkZSBsb3MgbWVkaW9zIHF1ZSBlc3RpbWUgb3BvcnR1bm9zLg0KDQpFbCBBdXRvciBkZWNsYXJhIGJham8ganVyYW1lbnRvIHF1ZSBsYSBwcmVzZW50ZSBjZXNpw7NuIG5vIGluZnJpbmdlIG5pbmfDum4gZGVyZWNobyBkZSB0ZXJjZXJvcywgeWEgc2VhbiBkZSBwcm9waWVkYWQgaW5kdXN0cmlhbCwgaW50ZWxlY3R1YWwgbyBjdWFscXVpZXIgb3RybyB5IGdhcmFudGl6YSBxdWUgZWwgY29udGVuaWRvIGRlIGxhIG9icmEgbm8gYXRlbnRhIGNvbnRyYSBsb3MgZGVyZWNob3MgYWwgaG9ub3IsIGEgbGEgaW50aW1pZGFkIHkgYSBsYSBpbWFnZW4gZGUgdGVyY2Vyb3MsIG5pIGVzIGRpc2NyaW1pbmF0b3Jpby4gUkVESSBlc3RhcsOhIGV4ZW50byBkZSBsYSByZXZpc2nDs24gZGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhLCBxdWUgZW4gdG9kbyBjYXNvIHBlcm1hbmVjZXLDoSBiYWpvIGxhIHJlc3BvbnNhYmlsaWRhZCBleGNsdXNpdmEgZGVsIEF1dG9yLg0KDQpMYSBvYnJhIHNlIHBvbmRyw6EgYSBkaXNwb3NpY2nDs24gZGUgbG9zIHVzdWFyaW9zIHBhcmEgcXVlIGhhZ2FuIGRlIGVsbGEgdW4gdXNvIGp1c3RvIHkgcmVzcGV0dW9zbyBkZSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIHkgY29uIGZpbmVzIGRlIGVzdHVkaW8sIGludmVzdGlnYWNpw7NuLCBvIGN1YWxxdWllciBvdHJvIGZpbiBsw61jaXRvLiBFbCBtZW5jaW9uYWRvIHVzbywgbcOhcyBhbGzDoSBkZSBsYSBjb3BpYSBwcml2YWRhLCByZXF1ZXJpcsOhIHF1ZSBzZSBjaXRlIGxhIGZ1ZW50ZSB5IHNlIHJlY29ub3pjYSBsYSBhdXRvcsOtYS4gQSB0YWxlcyBmaW5lcyBlbCBBdXRvciBhY2VwdGEgZWwgdXNvIGRlIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zIHkgRUxJR0UgdW5hIGRlIGVzdGFzIGxpY2VuY2lhcyBlc3RhbmRhcml6YWRhcyBhIGxvcyBmaW5lcyBkZSBjb211bmljYXIgc3Ugb2JyYS4NCg0KRWwgQXV0b3IsIGNvbW8gZ2FyYW50ZSBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhIHkgZW4gcmVsYWNpw7NuIGEgbGEgbWlzbWEsIGRlY2xhcmEgcXVlIGxhIEFOSUkgc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSDDqXN0YSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCwgeSBxdWUgw6lsIG1pc21vIGFzdW1lIGxhIHJlc3BvbnNhYmlsaWRhZCBmcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtbyBvIGRlbWFuZGEgcG9yIHBhcnRlIGRlIHRlcmNlcm9zLiBMQSBBTklJIGVzdGFyw6EgZXhlbnRhIGRlIGVqZXJjaXRhciBhY2Npb25lcyBsZWdhbGVzIGVuIG5vbWJyZSBkZWwgQXV0b3IgZW4gZWwgc3VwdWVzdG8gZGUgaW5mcmFjY2lvbmVzIGEgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGRlcml2YWRvcyBkZWwgZGVww7NzaXRvIHkgYXJjaGl2byBkZSBsYSBvYnJhLg0KDQpBTklJIG5vdGlmaWNhcsOhIGFsIEF1dG9yIGRlIGN1YWxxdWllciByZWNsYW1hY2nDs24gcXVlIHJlY2liYSBkZSB0ZXJjZXJvcyBlbiByZWxhY2nDs24gY29uIGxhIG9icmEgeSwgZW4gcGFydGljdWxhciwgZGUgcmVjbGFtYWNpb25lcyByZWxhdGl2YXMgYSBsb3MgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIHNvYnJlIGVsbGEuDQoNCkVsIEF1dG9yIHBvZHLDoSBzb2xpY2l0YXIgZWwgcmV0aXJvIG8gbGEgaW52aXNpYmlsaXphY2nDs24gZGUgbGEgb2JyYSBkZSBSRURJIHPDs2xvIHBvciBjYXVzYSBqdXN0aWZpY2FkYS4gQSB0YWwgZmluIGRlYmVyw6EgbWFuaWZlc3RhciBzdSB2b2x1bnRhZCBlbiBmb3JtYSBmZWhhY2llbnRlIHkgYWNyZWRpdGFyIGRlYmlkYW1lbnRlIGxhIGNhdXNhIGp1c3RpZmljYWRhLiBBc2ltaXNtbyBBTklJIHBvZHLDoSByZXRpcmFyIG8gaW52aXNpYmlsaXphciBsYSBvYnJhIGRlIFJFREksIHByZXZpYSBub3RpZmljYWNpw7NuIGFsIEF1dG9yLCBlbiBzdXB1ZXN0b3Mgc3VmaWNpZW50ZW1lbnRlIGp1c3RpZmljYWRvcywgbyBlbiBjYXNvIGRlIHJlY2xhbWFjaW9uZXMgZGUgdGVyY2Vyb3MuGobiernohttps://fundacionceibal.edu.uy/https://redi.anii.org.uy/oai/requestmamunoz@fundacionceibal.edu.uyUruguayopendoar:9421_12024-04-15T15:00Ceibal en REDI - Fundación Ceibalfalse
spellingShingle A Data Protection Framework for Learning Analytics
Cormack, Andrew Nicholas
Learning analytics
privacy
data protection
consent
legitimate interests
Ciencias Sociales
Ciencias de la Educación
Educación
Privacidad
Ética
Tecnología
status_str publishedVersion
title A Data Protection Framework for Learning Analytics
title_full A Data Protection Framework for Learning Analytics
title_fullStr A Data Protection Framework for Learning Analytics
title_full_unstemmed A Data Protection Framework for Learning Analytics
title_short A Data Protection Framework for Learning Analytics
title_sort A Data Protection Framework for Learning Analytics
topic Learning analytics
privacy
data protection
consent
legitimate interests
Ciencias Sociales
Ciencias de la Educación
Educación
Privacidad
Ética
Tecnología
url https://hdl.handle.net/20.500.12381/326
https://doi.org/10.18608/jla.2016.31.6